Home > Press > Astronomy Technology Brings Nanoprobes into Sharper Focus
Image B is standard dual-color image of red and green nanoparticles in the presence of a cancer gene sequence. Note that the nanoprobes occasionally overlap in the image to create the appearance of yellow probes. Image D is a similar dual-color image of red and green nanoparticles clarified by new Georgia Tech and Emory technology. |
Abstract:
Georgia Tech and Emory University researchers have created a technology based on astronomy software that provides more precise images of single molecules tagged with nanoprobes. The clearer images allow researchers to collect more detailed information about a single molecule, such as how the molecule is binding in a gene sequence.
While pondering the challenges of distinguishing one nano-sized probe image from another in a mass of hundreds or thousands of nanoprobes, researchers at Georgia Tech and Emory University made an interesting observation. The tiny, clustered dots of light looked a lot like a starry sky on a clear night.
The biomedical researchers realized that astronomers had already made great strides in solving a problem very similar to their own — isolating and analyzing one dot (in this case a star) in a crowded field of light. They hypothesized that a computer system designed for stellar photometry, a branch of astronomy focused on measuring the brightness of stars, could hold the solution to their problem.
Now, Georgia Tech and Emory researchers have created a technology based on stellar photometry software that provides more precise images of single molecules tagged with nanoprobes, particles specially designed to bind with a certain type of cell or molecule and illuminate when the target is found. The clearer images allow researchers to collect more detailed information about a single molecule, such as how the molecule is binding in a gene sequence, taking scientists a few steps closer to truly personalized and predictive medicine as well as more complex biomolecular structural mapping.
In addition to biomedical applications, the system could be used to clarify other types of nanoparticle probes, including tagged particles or molecules.
The research is detailed in this week's online Early Edition of the Proceedings of the National Academy of Sciences (PNAS).
"As more powerful imaging technologies are developed, scientists face a real challenge to quantitatively analyze and interpret these new mountains of data," said May Wang, an assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. "This PNAS paper is only a start, but I expect that innovative computing and data processing will be increasingly used to reveal detailed and quantitative features not currently available to biomedical researchers."
"This work is pointing to a new era in light microscopy in which single molecule detection is achieved at nanometer resolution," said Dr. Shuming Nie, a professor of biomedical engineering and chemistry and also the director of the Emory-Georgia Tech Cancer Nanotechnology Center. "This is also an example of interdisciplinary research in which advanced computing meets nanotechnology. I envision major applications not only for single-molecule imaging, but also for ultrasensitive medical diagnostics."
Because scientists frequently use several different colors of nanoprobes to color code genes and proteins, a blended color dot is a common challenge when analyzing images. For every few green or red dots in an image, there could be a few yellow dots as well, indicating that at least two dots are clustering to create the appearance of a new color.
While less than precise nanoprobe images yield valuable information, the Georgia Tech and Emory research team knew that better technology was needed to pinpoint the exact distance in nanometers between probes to reveal important information about the size and binding geometry of targeted molecules.
"We had no way of knowing for sure if we were looking at one molecule or two or three molecules very near one another," said Wang. "The fuzzy dot images were not precise enough on the nanometer level to truly tell us how these markers reflect DNA, but this system allows us to collect quantitative data and prove — not hypothesize — how genes are behaving."
Instead of starting from scratch to create a system to isolate the clumped nanoprobe images, the Georgia Tech and Emory researchers pursued their stellar photometry idea by adapting DAOPHOT, a program written by Peter Stetson at the Dominion Astrophysical Observatory designed to handle crowded fields of stars.
After adapting DAOPHOT, the research team used color-coded nanoparticles to beat the traditional diffraction limit by nearly two orders of magnitude, allowing routine super-resolution imaging at one nanometer resolution. And by using DNA molecules, two color-coded nanoparticles are designed to recognize two binding sites on a single target. Then the particles are brought together within nanometer distances after target binding.
These distances are sorted out by highly efficient image processing technology, leading to detection and identification of individual molecules based on the target's geometric size.
Compared to other single molecule imaging methods, the Georgia Tech and Emory system allows for higher-speed detection involving much larger sample volumes (microliter to milliliters).
Collaborators on the project include Amit Agrawal and Geoffrey Wang from the Departments of Biomedical Engineering and Chemistry at Emory and Georgia Tech, and Rajesh Deo from the Department of Physics and Astronomy at Georgia State University.
The research was funded by the National Institutes of Health, the Department of Energy Genomes to Life Program and the Georgia Cancer Coalition. Computer support was also provided by Microsoft and Hewlett-Packard.
####
About Georgia Institute of Technology
The Georgia Institute of Technology is one of the nation's premiere research universities. Ranked seventh among U.S. News & World Report's top public universities, Georgia Tech's more than 18,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.
For more information, please click here
Contacts:
Megan McRainey
Georgia Institute of Technology
404-894-6016
Copyright © Georgia Institute of Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Aerospace/Space
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024
Bridging light and electrons January 12th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||