Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Max Planck scientists shed light on transport mechanism in cells

The competition between molecular motors: A blue cargo is transported by two teams of molecular motors moving along the yellow microtubule. The red team of motors is pulling to the right towards the positive end (+), while the green team is pulling to the left towards the minus end (−). When both teams pull (in the center), they cancel each other out so the cargo hardly moves forwards. As soon as one team gains the upper hand, it moves quickly as the opposing motors are removed from the microtubule.

Image: Melanie Müller / MPI of Colloids and Interfaces
The competition between molecular motors: A blue cargo is transported by two teams of molecular motors moving along the yellow microtubule. The red team of motors is pulling to the right towards the positive end (+), while the green team is pulling to the left towards the minus end (−). When both teams pull (in the center), they cancel each other out so the cargo hardly moves forwards. As soon as one team gains the upper hand, it moves quickly as the opposing motors are removed from the microtubule.
Image: Melanie Müller / MPI of Colloids and Interfaces

Abstract:
Logistics is a key part of life. Nutrition, tools and information constantly have to be transported from one place to another in cells. Scientists at the Max Planck Institute of Colloids and Interfaces have now discovered how molecular motors transport cargos in cells. Two competing teams of motors pull in opposite directions, like in a tug-of-war contest. The winning team determines the direction of transport after the competition. (PNAS Early Edition, March 17th 2008)

Max Planck scientists shed light on transport mechanism in cells

Munich, Germany | Posted on March 19th, 2008

Transport processes in the cells of our body resemble the transport of goods on the roads. Molecular motors, which are special protein molecules, act as trucks. They carry the cellular cargo on piggy-back and transport it along microtubules, which are the roads of the cell. However, the molecular transporters are a billion times smaller than trucks and can only move as far as the beginning or end of the microtubule, depending on their type. They have to fight their way through a crowd that is more like a busy pedestrian area than a motorway, and also have to compete with motors that want to move in the opposite direction, as scientists at the Max Planck Institute of Colloids and Interfaces in Potsdam have now discovered in a computer simulation.

Several motors are always involved in the tug-of-war over a cargo - for example, some of the kinesin type and some of the dynein type. The kinesin motors move to the end of the microtubule that biologists call the positive end, while the dynein motors move to the minus end. The findings of the Potsdam-based scientists show that the stronger motor team determines the direction in which the cargo is moved. It involves a tug-of-war where opposing motors break off from the microtubule. It was previously assumed that there was a system of coordination that allowed for only one team of motors; it was believed this alternated between one team and the other.

"The tug-of-war is the simplest imaginable mechanism," says Melanie Müller, one of the scientists involved in the project. "But it is possible, if you consider the properties of the individual motors measured experimentally. They produce a strong non-linear reaction when they are pulled." A motor from the losing team is subject to a strong force and is quickly removed from the microtubule. The remaining motors must then take the force of the winning team alone and are also removed even more quickly. In a domino effect, the losing motors concede and are removed from the microtubule until no others remain. The winning team is then able to transport the cargo quickly, unopposed. "However, the cell does not leave it to chance to ensure that the cargo arrives at its destination. Regulatory proteins probably intervene," says Melanie Müller.

Researchers into the transport of fat particles in Drosophila embryos examined whether her model applied in reality. It is actually explained by experimental observations that took place previously on the transport mechanism. A cargo in a microtubule does not move directly from one end to the other. It is constantly pulled back in the opposite direction. The losing motors can, however, occasionally remove the winning ones from the microtubule as heat sometimes blows the winning motors away. The cargo particles therefore move in both directions.

"This bi-directional transport process is very flexible," explains Melanie Müller. It can change direction if the cargo passes its destination or change the speed of the transport. The tug-of-war mechanism, where the winning team pulls the opposing motor team as well as the cargo through the cell, also solves another logistical problem in the cell. It always carries the motors to the end of the microtubule from which they are able to move, preventing an accumulation of motors of one kind at their respective destination.

"Despite the simple mechanism, a cargo particle transported by two motor teams reveals very complex motility behavior," said Melanie Müller. There are seven different types of motility behavior. These are various combinations of movements to the positive and minus end as well as pauses to which the cargo particles can be subjected. The probability of movement in a certain direction or stopping, and the time lapses between the changes of direction, depend heavily on the properties and the number of the motors involved. The cell uses these to direct the cargo transport. If a team of motors is pulled harder or faster, the cargo moves in the minus instead of the positive direction or stops.

"The simple and efficient tug-of-war mechanism could be used for the transport in micro-laboratories on chips," relates Melanie Müller. In the same way as with the biological model, teams of motors can transport certain molecules to specific reaction locations on the chip and then also bring back the reaction product. "Our quantitative tug-of-war theory allows motor properties to be optimized for this purpose," according to Müller.

[MM / PH]

Original work:

Melanie J.I. Müller, Stefan Klumpp, and Reinhard Lipowsky
Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors
PNAS Early Edition, March 17th 2008

####

About Max Planck Society
The research institutes of the Max Planck Society perform basic research in the interest of the general public in the natural sciences, life sciences, social sciences, and the humanities. In particular, the Max Planck Society takes up new and innovative research areas that German universities are not in a position to accommodate or deal with adequately. These interdisciplinary research areas often do not fit into the university organization, or they require more funds for personnel and equipment than those available at universities. The variety of topics in the natural sciences and the humanities at Max Planck Institutes complement the work done at universities and other research facilities in important research fields. In certain areas, the institutes occupy key positions, while other institutes complement ongoing research. Moreover, some institutes perform service functions for research performed at universities by providing equipment and facilities to a wide range of scientists, such as telescopes, large-scale equipment, specialized libraries, and documentary resources.

For more information, please click here

Contacts:
Max Planck Society
for the Advancement of Science
Press and Public Relations Department

Hofgartenstrasse 8
D-80539 Munich
Germany

PO Box 10 10 62
D-80084 Munich

Phone: +49-89-2108-1276
Fax: +49-89-2108-1207

E-mail:
Internet: www.mpg.de/english/

Responsibility for content:
Dr. Bernd Wirsing (-1276)

Executive Editor:
Barbara Abrell (-1416)

Melanie J.I. Müller
Max Planck Institute of Colloids and Interfaces, Potsdam
Tel.: +49 331 567-9623
E-mail:

Copyright © Max Planck Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project