Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Hitachi Maxell Develops New Highly-Active Catalyst for Higher Performance Fuel Cells; Achieves 4.8x More Oxygen-Reduction Current than Platinum

An electron microscope photograph of a gold-platinum (AuPt) catalyst deposited on a conductive carbon support. The dark grey or black areas are the gold-platinum catalysts, and the light grey areas are the carbon support. The gold-platinum catalyst particles are 2 to 3 nanometer in size.
An electron microscope photograph of a gold-platinum (AuPt) catalyst deposited on a conductive carbon support. The dark grey or black areas are the gold-platinum catalysts, and the light grey areas are the carbon support. The gold-platinum catalyst particles are 2 to 3 nanometer in size.

Abstract:
—Achieving approximately 4.8 times*1 higher oxygen reduction
current per unit area compared to that of platinum—

Hitachi Maxell Develops New Highly-Active Catalyst for Higher Performance Fuel Cells; Achieves 4.8x More Oxygen-Reduction Current than Platinum

Tokyo, Japan | Posted on April 2nd, 2008

Hitachi Maxell, Ltd. (TSE: 6810) has announced development of a new catalyst used for oxygen-reduction reactions at the cathode of a polymer electrolyte fuel cell (PEFC). The new catalyst is gold-platinum (AuPt) nano-particle 2 to 3 nm in size and can generate approximately 4.8 times the oxygen-reduction current per unit area than commercial platinum catalysts.

PEFCs are a promising clean-energy source for automobiles, homes, and mobile devices. Platinum is commonly used as the catalyst for the oxygen-reduction reaction in PEFCs, but platinum is an extremely expensive precious metal, so reducing material cost for PEFCs by minimizing the amount of platinum used, while improving its catalytic effect is an important R&D topic.

Increasing the surface area of the catalyst by reducing particle size is an effective way of improving catalytic activity. It has also been reported that the addition of base metals such as iron, cobalt and nickel to platinum also improves the oxygen-reduction reaction rate, but these kinds of base metals dissolve easily in the acidic environment of a PEFC where the catalyst is working, which is a problem.

Maxell has developed a new catalyst for oxygen-reduction reactions in PEFCs. The new catalyst is a composition of platinum and gold and is resistant to acidic environments. It was difficult to synthesize gold particles smaller than 5 nm due to its relatively low melting point, but by applying a proprietary nano-level particle synthesizing technology, Maxell has succeeded in developing a high-activity structure in which the gold and platinum are not fully alloyed for the new catalyst. Using citric acid as a reducing agent, AuPt catalyst particles 2 to 3 nm in size were synthesized at 373 K. Compared with platinum catalysts, this new AuPt catalyst achieves approximately 4.8 times higher oxygen-reduction current per unit area. X-ray diffraction analysis revealed that the gold and platinum are not fully alloyed and it is supposed that this structure results in the improved the oxygen-reduction reaction activity.

This success represents a large step closer to fuel cells that are practical for applications requiring large current, such as automobiles and homes.

Maxell presented this new technology for synthesizing a highly-active AuPt catalyst at the 101st catalysis conference held March 29 at the Tower Hall Funabori in Tokyo.

Maxell will continue nano-technology research and development towards practical applications in polymer-electrolyte and direct-methanol fuel cells.

####

About Hitachi Maxell, Ltd.
Since its foundation in 1960, Hitachi Maxell, Ltd. (TSE: 6810) has led the electronics industry at home and abroad in the fields of memory and mobility. Maxell is a leading manufacturer of information storage media products including magnetic tapes, optical disks, and battery products including lithium ion rechargeable batteries, micro batteries and dry cell batteries. For more information on Maxell, please visit the Company's web site at www.maxell.com .

For more information, please click here

Contacts:
Hitachi Maxell
Corporate Communications
Tel: +81-3-3515-8211

Copyright © Hitachi Maxell, Ltd.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Automotive/Transportation

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project