Home > News > Self-assembly, science of the future
April 7th, 2008
Self-assembly, science of the future
Abstract:
In 2007, Dr Babak Amir Parviz was chosen by the MIT Technology as one of the top innovators under the age of 35, for developing the self-assembly manufacturing method.
The Genome Technology Magazine selected him as a star young genomics investigator. He has also received the National Science Foundation CAREER Award.
In his last year of high school, Amir Parviz won the Kharazmi award for designing a single-engine airplane along with Reza Amirkhani and Amir Hossein Samakar.
The same year, he won a bronze medal from the 22nd international physics Olympiad.
Dr Amir Parviz holds a BA in English Literature from the University of Washington, a BS in Electronics Engineering from the Sharif University of Technology, an MS in Electrical Engineering and Physics as well as a PhD in Electrical Engineering from University of Michigan, and a Postdoctoral training degree in Chemistry and Chemical Biology from Harvard.
He is currently a faculty member at the Electrical Engineering Department of the University of Washington (UW) and the Associate Director of the Micro-scale Life Sciences Center at UW.
Q. Can you explain self assembly for us?
A. Self-assembly is a fundamentally and radically different way to make structures. If we look at the more conventional engineering, for example in building a car, what is done is that all the parts of the final product are made and then they are assembled (by a human or a robot) to make the final structure of the automobile.
Although this process is the most widely used one today to make engineered structures, this is not the way nature makes things. In nature, the "parts" of a final system find each other and bind on their own to form a plant, an insect etc. In nature structures 'self-assemble'.
Our group works on developing methods that would allow us to use self-assembly for building various things. For example, we have deployed a number of self-assembly techniques to build a range of functional devices from nano-scale optical waveguide to flexible circuits.
Q. Tell us more about the sciences and project which will benefit from self assembly?
A. Self-assembly is a widely applicable approach to making things. My guess is that in principle it is possible to improve the current state-of-the-art in manufacturing by orders of magnitude in terms of the minimum part size, the maximum part count, and the available material diversity if self-assembly is used.
Source:
presstv.ir
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||