Home > Press > Carnegie Mellon's Nadine Aubry, Colleague Pushpendra Singh Work to Find Method for Improved Self-Assembly of Nanoparticles
Abstract:
Carnegie Mellon University's Nadine Aubry and colleague Pushpendra Singh of the New Jersey Institute of Technology (NJIT) are leading a research team to develop a manufacturing strategy that could improve technologies used in tissue engineering and information technology.
Aubry, head of Carnegie Mellon's Mechanical Engineering Department, and Singh, an engineering professor at NJIT, have developed a new way of herding nano/micro-particles into highly ordered two-dimensional lattices (monolayers) with adjustable spacing between the particles.
The team's research, reported last month in the Proceedings of the National Academy of Sciences USA journal (pnas.org/egi/content/full/105/10/3695), shows how the use of electric fields and fluid- fluid interfaces can be judiciously used to develop new materials with special properties to increase the efficiency of drug delivery patches, solar cells and the next generation of high- performance computing.
"This new manufacturing strategy could revolutionize the way we design two-dimensional nanomaterials with adaptable microscopic structures and desired properties," said Aubry, who was recently named a fellow of the American Association for the Advancement of Science (AAAS) for her outstanding contributions to the field of fluid dynamics.
The research team found they could control the particle distribution, particularly uncharged particles, at a fluid-fluid interface by applying an electric field. Without an electric field, particles self assemble. But they self assemble under capillary action, which make particles attract one another at the free-surface of a liquid. This is the same action we experience when our cereal flakes regroup at the surface of a bowl of milk.
This self-assembly via capillary action has serious flaws. Some of those flaws include an inability to manipulate small-sized particles and adjust the porosity of the resulting material. There are also inherent defects in the particle patterns.
"What is fascinating, is that the presence of an electric field can remedy all these deficiencies," Aubry said. "The key is that when we apply the electric field, we can expand or shrink the lattice, and we can do it dynamically. The explanation is all in the subtle interplay between the forces - both electrostatic and hydrodynamic - acting on the particles."
The research team shows that their new technique creates forces capable of assembling micron-sized particles and theoretically predicts that the method should apply to nanoparticles as well.
"We are extremely excited about the new self-assembly method because it offers flexibility, precision and simplicity," Aubry said.
####
About Carnegie Mellon University
Carnegie Mellon is a private research university with a distinctive mix of programs in engineering, computer science, robotics, business, public policy, fine arts and the humanities. More than 10,000 undergraduate and graduate students receive an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A small student- to-faculty ratio provides an opportunity for close interaction between the students and professors. While technology is pervasive on its 144-acre Pittsburgh campus, Carnegie Mellon is also distinctive among leading research universities for the world-renowned programs in its College of Fine Arts. A global university, Carnegie Mellon has campuses in Silicon Valley, Calif., and Qatar, and programs in Asia, Australia and Europe.
For more information, please click here
Contacts:
Chriss Swaney
CMU Media Relations
412-268-5776
Copyright © Carnegie Mellon University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||