Home > News > Multiscale Modeling of Composite Materials
April 26th, 2008
Multiscale Modeling of Composite Materials
Abstract:
Understanding the deformation or thermal behavior of composites has always been a complex problem. One must take into consideration the behavior of the reinforcement (particle, fiber, or whisker), matrix, and, of course, the interface or interphase formed between these components. Clearly, the interplay between the components in a composite is also key. Load transfer from the matrix to the fiber is directly related to the aspect ratio of the fiber, as well as the yield stress of the matrix (or, in brittle composites, the shear strength of the interface). With the advent of new computational methodologies and techniques, not to mention the sheer increase in efficiency and speed of computer processors, multiscale modeling has become an important part of understanding the behavior of composite materials. Multiscale modeling is particularly suited toward composites because of the multiple length scales involved as well as the overall complex nature of composite behavior. The three papers in this section illustrate the importance of multiscale modeling of composites. A variety of numerical computational techniques are used, such as finite-element modeling, crystal plasticity, and atomistic modeling, to understand the behavior of the composite, More importantly, two or more of these techniques are used in combination to stitch together the behavior at different length scales. The paper by A. Misra et al. discusses the deformation behavior of nanoscale metallic multilayered composites. Metallic composites with layers at the nanoscale exhibit very high strengths. The mechanical behavior of these composites was studied in terms of the atomic structure at the interfaces between the layers. The atomic level modeling is particularly needed here because the layer thickness is in the range of a few nanometers. Information obtained from the atomistic modeling, such as the critical stress required for dislocations to overcome the barrier at the interface and be transmitted to adjacent layers, are used in dislocation dynamics simulations to study dislocation-dislocation interactions. The third level of modeling involves crystal plasticity modeling of phenomena on the length scale of a grain and encompasses information from atomistic and dislocation dynamics simulations.
Source:
redorbit.com
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Discoveries
Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Materials/Metamaterials/Magnetoresistance
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |