Home > News > What's green and makes electricity? An artificial leaf
May 19th, 2008
What's green and makes electricity? An artificial leaf
Abstract:
Photosynthesis is nearly the sole source of energy for the creatures inhabiting our planet, include the two-legged variety. For billions of years, since the appearance of the first vegetable cell, plants and bacteria have converted sunlight into energy-rich compounds. That is how all petroleum and coal reserves were created. Unfortunately, about 200 years of post-Industrial Revolution activity has wiped out most of these, and today's vegetation cannot take up the slack.
Photovoltaic cells made of silicon can convert solar energy to electricity, but due to their extremely high price, it costs four times more to generate power this way than with coal or petroleum. Now, researchers from Tel Aviv University (TAU) claim to have created a prototype of a photovoltaic cell by genetically engineering proteins that produce energy using photosynthesis. If successful, this would enable energy production on a commercial scale through the construction of "artificial leaves." The cells would even appear green, because of the wavelength of the light that they collect.
The new technology, developed by a team headed by TAU biochemist Prof. Chanoch Carmeli, will be presented tomorrow at an international conference, Renewable Energy and Beyond, that opens today at the university's Ramat Aviv campus. Former U.S. vice president Al Gore is to attend the conference.
Source:
haaretz.com
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||