Home > Press > Chemists Create Cancer-Detecting Nanoparticles
Abstract:
Magnetic resonance imaging (MRI) can be a doctor's best friend for detecting a tumor in the body without resorting to surgery. MRI scans use pulses of magnetic waves and gauge the return signals to identify different types of tissue in the body, distinguishing bone from muscle, fluids from solids, and so on.
Scientists have found that magnetic nanoparticles can be especially helpful in locating cancerous cell clusters during MRI scans. Like tiny guide missiles, the nanoparticles seek out tumor cells and attach themselves to them. Once the nanoparticles bind themselves to these cancer cells, the particles operate like radio transmitters, greatly aiding the MRI's detection capability.
Now, a team of researchers led by Shouheng Sun, Ph.D., of Brown University, and Xiaoyuan Chen, Ph.D., a member of the Stanford University Center for Cancer Nanotechnology Excellence Focused on Therapy Response, have created the smallest magnetic nanoparticles to date that can be employed on such seek-and-find missions. With a thinner coating, the particles also emit a stronger signal for the MRI to detect. Their work appears in the Journal of the American Chemical Society.
The team created iron oxide nanoparticles coated with a peptide-based targeting agent. The researchers injected the particles into mice and tested their ability to locate a brain tumor cell called U87MG. The investigators concentrated specifically on the nanoparticle's size and the thickness of the peptide coating, which ensures that the nanoparticle attaches to the tumor cell.
Size is important because the trick is to create a nanoparticle that is small enough to navigate through the bloodstream and reach the diseased area. Bigger particles tend to stack up, creating the circulatory system's version of a traffic jam. The investigators developed a nanoparticle that is about 8.4 nanometers in overall diameter—some six times smaller than the size of particles currently used in medicine.
The coating, while integral to the nanoparticles' attachment to the tumor cell, also is crucial to establishing the "signal-to-noise" ratio that a MRI uses. The thinner the coating, the stronger the emitted signal and vice versa. The research team outfitted its nanoparticles with a 2-nanometer thick peptide coating—10 times thinner than the coating available in popular MRI contrast agents such as Feridex.
Another important feature of the team's work is discovering that the RGD peptide coating binds almost seamlessly to the U87MG tumor cell. The team plans to test the particle's ability to bind with other tumor cells in additional animal experiments.
####
About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580
Copyright © National Cancer Institute
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||