Home > Press > Quantum Rods Probe Blood-Brain Barrier
Abstract:
One of the chief difficulties in treating brain tumors involves getting potential tumor-killing drugs across the blood-brain barrier and into the brain. Now, researchers from a NCI Cancer Nanotechnology Platform Partnership at the University of Buffalo have used targeted quantum rods both to breach the blood-brain barrier and to study how such constructs move across this largely impermeable barrier. Paras Prasad, Ph.D., principal investigator of the SUNY-Buffalo Platform Partnership, led the research team that published results in the journal Bioconjugate Chemistry.
The investigators began their work by preparing red- and orange-emitting quantum rods made of cadmium selenide, cadmium sulfide, and zinc sulfide. They then attached an iron-transporting protein known as transferrin to the surface of the quantum rods. Transferrin binds to a complex protein known as the transferrin receptor. The blood-brain barrier contains large numbers of this receptor, and research has shown that it can act to transport biomolecules across the blood-brain barrier.
Because of the intense fluorescence exhibited by quantum rods, the investigators were able to image these markers as they bound to and moved across a cell-based model of the blood-brain barrier. In contrast, quantum rods lacking surface transferrin did not cross the model blood-brain barrier. One interesting finding from these experiments is that there appears to be a critical period that starts after 26 hours at which time transport is most efficient across the blood-brain barrier. The investigators note that the data from these experiments should help them design new nanoscale agents for ferrying anticancer drugs into the brain.
####
About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580
Copyright © National Cancer Institute
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Quantum Dots/Rods
A new kind of magnetism November 17th, 2023
IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||