Home > Press > Nanotechnology, Biomolecules, and Light Unite to “Cook” Cancer Cells
Abstract:
Using carbon nanotubes linked to tumor-homing antibodies, a research team headed by Ellen Vitetta, Ph.D., M.D., of the University of Texas Southwestern Medical Center has shown that they can specifically kill the targeted tumor cells using near-infrared light. This work appears in the Proceedings of the National Academy of Sciences.
In this study, the investigators used monoclonal antibodies that targeted specific sites on lymphoma cells to coat carbon nanotubes. When exposed to near-infrared light, carbon nanotubes generate significant amounts of heat that can kill cells.
In cultures of cancerous lymphoma cells, the antibody-coated nanotubes attached to the cells' surfaces. When the targeted cells were then exposed to near-infrared light, the nanotubes heated up, generating enough heat to essentially "cook" the cells and kill them. Nanotubes coated with an unrelated antibody neither bound to nor killed the tumor cells.
"Using near-infrared light for the induction of hyperthermia is particularly attractive because living tissues do not strongly absorb radiation in this range," said Dr. Vitetta. "Once the carbon nanotubes have bound to the tumor cells, an external source of near-infrared light can be used to safely penetrate normal tissues and kill the tumor cells."
The use of carbon nanotubes to destroy cancer cells with heat is being explored by several research groups, but the new study is the first to show that both the antibody and the carbon nanotubes retained their physical properties and their functional abilities, binding to and killing only the targeted cells. This was true even when the antibody-nanotube complex was placed in a setting designed to mimic conditions inside the human body.
####
About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580
Copyright © National Cancer Institute
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||