Home > Press > Multitasking nanotechnology
Abstract:
Confocal microscope image of a self-assembled monolayer of a polychlorotriphenyl methyl radical patterned on a quartz surface. This multifunctional molecule behaves as an electroactive switch with optical and magnetic response.
Tiny electronically active chemicals can be made to form ordered layers on a surface, thanks to research supported by the European Science Foundation (ESF) through the EUROCORES programne SONS 2 (Self-Organised NanoStructures).
These nanostructured layers may one day be used to build the components of electronics devices, such as transistors and switches, for a future generation of powerful computers based on molecules rather than silicon chips.
Speaking at the European Materials Research Society (EMRS) meeting in Strasbourg, SONS II scientist Marta Mas-Torrent explained the potential of nanotechnology: "Currently, there is a great interest in employing functional molecules as building blocks for preparing devices since this will facilitate the move towards device miniaturization."
On this scale, manipulating nanoscopic components requires skill and determination but by exploiting molecular self assembly, the researchers hope to build ordered layers just a single molecule thick using microcontact printing techniques borrowed from the electronics industry.
They are now creating different arrangements of monolayers on gold, silica, and other materials.
Mas-Torrent works with Nuria Crivillers and Concepcio Rovira in Jaume Veciana's group at CSIC, in Barcelona, Spain, and is a member of the Fun-SMARTs project of ESF's SONS initiative. In her talk, which won the symposium's most original research work, sponsored by Advanced Materials, she explained the importance of multifunctional organic radicals, molecules with a spare electron, such as polychorotriphenylmethyl (PTM) radicals, which can undergo self-assembly into these organised layers.
Organic free radicals are usually highly reactive because of their spare electron. The moment they come into contact with another molecule the electron triggers an often-explosive chemical reaction. PTM radicals are different because their spare electron is shrouded by bulky chlorine atoms that hinder any explosive behaviour.
PTM radicals are often highly coloured and exhibit fluorescence in the red region of the visible spectrum, colour and fluorescence always have the potential to be exploited in optical electronics devices. Just as importantly, PTM radicals are also electroactive. This means they can be easily and reversibly reduced (or oxidized) to their positively or negatively charged (cationic or anionic) species. The different oxidised and reduced forms of PTM are different colours but neither oxidized nor reduced form is magnetic or fluorescent.
Mas-Torrent explained the relevance of this clutch of changeable properties for her self-assembled monolayers (SAMs). "The preparation of SAMs functionalised with PTM radicals on substrates results in multifunctional surfaces which are electrochemically, optically and magnetically active," she said, "We have demonstrated that these SAMs can be used as chemical and electrochemical redox switches with optical and magnetic responses."
Mas-Torrent and her colleagues did not stop with standalone SAMs. They have now added long hydrocarbon side-chains to their PTMs and found that these can also self-assemble on a graphite surface. They then studied behaviour at the interface between the graphite surface and a liquid and found that the self-assembly process is hierarchical and can give rise to complex three-dimensional ordered nanostructures that form double rows composed by a magnetic core of radicals surrounded by the side-chains.
By modifying a surface with molecules that can switch between two states - bistable compounds - the team hopes to open up the possibility of using these systems in memory devices. Surfaces functionalised with PTM radicals will allow them to fabricate multifunctional surfaces which can be interconverted between two states that exhibit different optical and magnetic properties that can be used as read-out mechanisms.
"The ultimate goal is to employ these radical building blocks to construct nanometre-scale devices addressed to specific applications," explains Mas-Torrent. By immobilizing them on specially prepared surfaces they could control and observe electrical and magnetic behaviour and in the future perhaps hook them up to input and output devices.
Key to the team's success is the collaborative possibilities opened up by the program. "Veciana's group started working on the functionalisation of surfaces after the collaboration initiated with the group of Reinhoudt from the MESA+ Research Institute in Twente within the SONS Programme," explains Mas-Torrent. "The combination of the expertise of surface functionalisation from Twente with the expertise of functional molecules of Barcelona emerged in our recent results focused on the functionalisation of different surfaces with multifunctional molecules (paramagnetic, electroactive and fluorescent) which can act as molecular switches," Mas-Torrent adds.
Mas-Torrent concedes that "much more fundamental research works need to be carried out" before applications become available. "We hope that in the future, molecular devices will play an important technological role in our society," she adds.
For more information please go to www.esf.org/sons2
or www.icmab.es/nmmo/
####
About European Science Foundation
The aim of the European Collaborative Research (EUROCORES) Scheme is to enable researchers in different European countries to develop collaboration and scientific synergy in areas where European scale and scope are required to reach the critical mass necessary for top class science in a global context. The scheme provides a flexible framework which allows national basic research funding and performing organisations to join forces to support excellent European research in and across all scientific areas. The European Science Foundation (ESF) provides scientific coordination and support for networking activities of funded scientists currently through the EC FP6 Programme, under contract no. ERAS-CT-2003-980409. Research funding is provided by participating national organisations.
For more information, please click here
Contacts:
Dr. Angela Michiko Hama
33-388-762-149
Copyright © European Science Foundation
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||