Home > Press > Quantum Rod System May Safely 'Sneak' Drugs, Diagnostics into Brain
This confocal microscope image of a blood-brain barrier model shows quantum rods bioconjugated with transferrin; the findings could lead to better treatment of neuronal disorders. |
Abstract:
System also can serve as "test kit" for evaluating new transporter molecules
A unique nanoparticle system developed by University at Buffalo scientists takes advantage of the versatility of bioconjugated quantum rods to ferry novel diagnostic and therapeutic agents across the blood-brain barrier, according to recent in vitro findings.
Described in a paper published in Bioconjugate Chemistry, the system uses the rod-shaped semiconductor nanoparticles that are bioconjugated, or coupled, with biomolecules capable of crossing the blood-brain barrier.
The blood-brain barrier acts as a physiological "checkpoint" that selectively allows certain molecules in blood circulation to enter the brain. While it naturally evolved in order to protect the brain from invasion of various circulating toxins and other harmful molecules, the blood-brain barrier also serves as a major impediment to the brain-specific delivery of various diagnostic/therapeutic molecules needed for combating various neuronal disorders.
The quantum rod system the UB researchers developed has the potential to simultaneously and non-invasively deliver diagnostic and therapeutic agents targeted to a wide variety of neurological diseases as well as obesity and drug addiction, according to Paras N. Prasad, Ph.D., executive director of the UB Institute for Lasers, Photonics and Biophotonics and SUNY Distinguished Professor in the Department of Chemistry, who led the UB team.
"These brain-specific nanoparticle systems represent a significant improvement over commonly used, highly-invasive methods of delivering active molecules into the brain, most of which rely on direct injection," he said.
The UB team, together with colleagues from Buffalo General Hospital, has developed a simple method for linking quantum rods to the iron-transporting protein, transferrin and other biomolecules, which routinely pass through the blood-brain barrier.
"Our findings unfold a new dimension in blood-brain barrier transport using inorganic nanoparticles, which are structurally robust and demonstrate the potential to transport multiple agents across this physiological barrier," said Indrajit Roy, Ph.D., deputy director for biophotonics at the UB institute. "This system allows the nanoparticles and the multiple therapeutic and imaging agents they carry to 'sneak' safely across the barrier and into the brain. It's a Trojan horse approach."
The functionalized quantum rods proved to have very low toxicity, according to Ken-Tye Yong, Ph.D., postdoctoral research associate in the UB institute, providing additional evidence that when linked to drug molecules, they could make very suitable treatment probes for diseases of the brain.
The new nanoparticle platform could provide scientists with a kind of window on the blood-brain barrier, enhancing what they know about it and allowing them to view non-invasively in real-time how imaging and therapeutic agents affect the brain.
The quantum rod system also serves as the basis of a blood-brain barrier-crossing test kit the UB researchers are developing.
The test kit would enable scientists to competitively evaluate which molecules would most efficiently transport diagnostic and therapeutic agents across the blood-brain barrier by exploiting the ability of quantum rods to emit light in different colors, depending on their size.
The research is closely aligned with the strategic strength in integrated nanostructured systems identified in the UB 2020 strategic planning process.
In addition to Prasad, Roy and Yong, co-authors included Gaixia Xu, Ph.D., former postdoctoral associate, and Hong Ding, Ph.D., postdoctoral associate, both of the UB Institute for Lasers, Photonics and Biophotonics; Supriya D. Mahajan, Ph.D., research assistant professor in the Department of Medicine in the UB School of Medicine and Biomedical Sciences and at Buffalo General Hospital, and Stanley A. Schwartz, M.D., Ph.D., UB professor of Medicine, Pediatrics and Microbiology and director of the Division of Allergy, Immunology and Rheumatology in the Department of Medicine at Buffalo General Hospital.
This research was supported by the John R. Oishei Foundation and by UB's New York State Center of Excellence in Bioinformatics and Life Sciences.
####
About University at Buffalo
The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.
For more information, please click here
Contacts:
Ellen Goldbaum
716-645-5000 ext 1415
Copyright © University at Buffalo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Quantum Dots/Rods
A new kind of magnetism November 17th, 2023
IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||