Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Cool! Nanoparticle Research Points to Energy Savings

Nanoparticle additives to lubricants commonly combined with refrigerants used in chillers may encourage secondary nucleation—bubbles on top of bubbles. The double-bubble effect enhances boiling heat transfer and, ultimately, could help to boost the energy efficiency of industrial-sized cooling systems.

Credit: NIST
Nanoparticle additives to lubricants commonly combined with refrigerants used in chillers may encourage secondary nucleation—bubbles on top of bubbles. The double-bubble effect enhances boiling heat transfer and, ultimately, could help to boost the energy efficiency of industrial-sized cooling systems.

Credit: NIST

Abstract:
Adding just the right dash of nanoparticles to standard mixes of lubricants and refrigerants could yield the equivalent of an energy-saving chill pill for factories, hospitals, ships, and others with large cooling systems, suggest the latest results from National Institute of Standards and Technology (NIST) research that is pursuing promising formulations.

Cool! Nanoparticle Research Points to Energy Savings

GAITHERSBURG, MD | Posted on July 22nd, 2008

NIST experiments with varying concentrations of nanoparticle additives indicate a major opportunity to improve the energy efficiency of large industrial, commercial, and institutional cooling systems known as chillers. These systems account for about 13 percent of the power consumed by the nation's buildings, and about 9 percent of the overall demand for electric power, according to the Department of Energy.

NIST researcher Mark Kedzierski has found that dispersing "sufficient" amounts of copper oxide particles (30 nanometers in diameter) in a common polyester lubricant and combining it with an equally pedestrian refrigerant (R134a) improves heat transfer by between 50 percent and 275 percent. "We were astounded," he says.

Results of this work have been presented at recent conferences and will be reported in an upcoming issue of the ASME Journal of Heat Transfer.

Just how nanomaterial additives to lubricants improve the dynamics of heat transfer in refrigerant/lubricant mixtures is not thoroughly understood. The NIST research effort aims to fill gaps in knowledge that impede efforts to determine and, ultimately, predict optimal combinations of the three types of substances.

"As with all good things, the process is far from foolproof," Kedzierski explains. "In fact, an insufficient amount or the wrong type of particles might lead to degradation in performance."

On the basis of work so far, the researcher speculates several factors likely account for nanoparticle-enabled improvements in heat-transfer performance. For one, nanoparticles of materials with high thermal conductivity improve heat transfer rates for the system. Preliminary results of the NIST research also indicate that, in sufficient concentrations, nanomaterials enhance heat transfer by encouraging more vigorous boiling of the mixture. The tiny particles stimulate, in effect, double bubbles—secondary bubbles that form atop bubbles initiated at the boiling site. Bubbles carry heat away from the surface, and the fact that they're being formed more efficiently because of the nanoparticles means the heat gets transferred more readily.

Other interactions, Kedzierski says, also are likely to contribute to the dramatic performance improvements reported at NIST and elsewhere.

Success in optimizing recipes of refrigerants, lubricants and nanoparticle additives would pay immediate and long-term dividends. If they did not harm other aspects of equipment performance, high-performance mixtures could be swapped into existing chillers, resulting in immediate energy savings. And, because of improved energy efficiency, next-generation equipment would be smaller, requiring fewer raw materials in their manufacture.

####

About NIST
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Mark Bello

(301) 975-3776

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project