Home > News > Making carbon fullerenes with 100 percent efficiency
August 15th, 2008
Making carbon fullerenes with 100 percent efficiency
Abstract:
Carbon fullerenes—specifically C60, the spherical "bucky ball"—have received their fair share of attention, even in the shadow of the more buzz-worthy developments with carbon nanotubes and graphene. The bucky ball's spherical shape could allow it to contain molecules, while other chemical groups to can be attached to the surface, making biomedical applications a natural fit. Just like carbon nanotubes and graphene, however, bucky balls have proven difficult to synthesize reliably. Researchers have now discovered a method that produces the bucky ball configuration of carbon with nearly 100% conversion efficiency from precursor materials.
Current techniques for producing bucky balls are crude: graphite is vaporized and deposited, which may yield only fractions of a percentage of bucky ball fullerene. The vast majority of the carbon ends up in the nanotechnology carnival side-show as a spectacle of misshapen fullerenes, each presumably with unique and mysterious talents but present in scales not suited to reputable science. Not content with this injustice, scientists investigated catalyzing a decomposition reaction with the ever-useful (and insanely expensive) platinum.
Source:
arstechnica.com
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||