Home > Press > zNoseŽ Detects Sarin and Mustard Gas at Part Per Trillion Level
Abstract:
Electronic Sensor Technology (EST) (OTCBB:ESNR), a leading provider of innovative homeland security and environmental solutions, announces excellent results of real nerve agent testing in China. The experiment was performed by EST's distributor in China, Beijing R&D Technology, using a military facility in China.
This is the first time the zNoseŽ has actually measured real nerve agents, simulants were used in prior testing. Sarin and Mustard Gas were detected at very low concentrations levels. The minimum detection level (MDL) for Sarin is 85 parts per trillion (ppt) and the MDL for Mustard Gas is 100 ppt. These levels are well below the concentrations that begin to cause effects in an exposed population. The IDLH (Immediately Dangerous to Life and Health) level is the concentration of a nerve agent that would cause immediate or delayed permanent adverse effects after 30 minutes of unprotected exposure. The IDLH value for Sarin is 30 parts per billion. (1 part per billion is 1000 times larger than 1 part per trillion) Based on the above data, the zNose would give an indication of a Sarin attack at levels 350 times lower than the IDLH concentration. Mustard gas is less hazardous than Sarin (a higher IDLH) and thus would also be easily detectable before it poses a serious threat. Some nerve agents such as Sarin are odorless and cause permanent adverse effects or even death well before exposure is realized. In order to save human lives, it is critical to have a detection system in place that can detect these gases at very low concentrations. This makes the zNose a great sensory tool in the fight to protect lives from nerve agent attack.
For more information on the test result, click on the following link: www.estcal.com/TechPapers/Security/Real Nerve Agents.pdf
####
About Electronic Sensor Technology (EST)
Founded in 1995, Electronic Sensor Technology has developed and patented a chemical vapor analysis process with applications for the homeland security and environment markets.
SEC Filings and Forward-Looking Statements
This press release includes forward-looking statements, including the Company's expectations regarding its ability to develop and access capital markets and its ability to achieve expected results in the chemical detection and analysis industry. The forward-looking statements are identified through use of the words "potential," "anticipate," "expect," "planned" and other words of similar meaning. These forward-looking statements may be affected by the risks and uncertainties inherent in the chemical detection and analysis industry and in the Company's business. The Company cautions readers that certain important factors may have affected and could in the future affect the Company's beliefs and expectations, and could cause the actual results to differ materially from those expressed in any forward-looking statement made by or on behalf of the Company. For a discussion of these factors, please refer to our recent filings with the Securities and Exchange Commission, including our most recent report on Form 10-KSB. The Company undertakes no obligation to update forward-looking statements to reflect events or circumstances after the date hereof.
For more information, please click here
Contacts:
Electronic Sensor Technology
William Wittmeyers
650-574-1257
Copyright © Business Wire 2008
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Homeland Security
The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023
Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021
Highly sensitive dopamine detector uses 2D materials August 7th, 2020
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||