Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Lasers pushing the limits: The dissociation of nitrogen molecules by a free-electron laser signals a departure for more extreme light-matter interacti

Figure 1: Various phenomena observed in molecules with increasingly intense optical laser fields. 
From Yamanouchi, K. The next frontier. Science 295, 1660 (2002). Reprinted with permission from AAAS (www.sciencemag.org)
Figure 1: Various phenomena observed in molecules with increasingly intense optical laser fields.
From Yamanouchi, K. The next frontier. Science 295, 1660 (2002). Reprinted with permission from AAAS (www.sciencemag.org)

Abstract:
When matter is hit by a laser-beam, the effects on the molecules can be dramatic, particularly for short pulses of high-intensity radiation. In a quest to push the limits of intensity to achieve extreme light-matter interactions in large molecules, a team of researchers from RIKEN's Advanced Science Institute in Wako, the SPring-8 Center in Harima, and the University of Tokyo, has demonstrated the ionisation and consequently the dissociation of nitrogen molecules using a free-electron laser.

Lasers pushing the limits: The dissociation of nitrogen molecules by a free-electron laser signals a departure for more extreme light-matter interacti

Japan | Posted on September 12th, 2008

Laser radiation is an electromagnetic wave that oscillates along a laser beam. These oscillating electromagnetic fields can exert strong forces on the electrons in a molecule, particularly at the very short wavelengths in the extreme ultraviolet (XUV) part of the spectrum. At high laser intensities, the influence on molecules increases, leading to a so-called Coulomb explosion (Fig. 1).

A Coulomb explosion is a process where the force exerted by the laser field is so strong on electrons in a molecule that an electron gets ejected and leaves positively charged ions. These ions strongly repel each other and the molecule quickly dissociates. However, few experimental studies on this process have been reported and "little is understood concerning the interaction of intense high-frequency light in the XUV with atoms and molecules," comments Katsumi Midorikawa from the research team.

So far, Coulomb explosions have been observed in hydrogen, deuterium and even in the much heavier nitrogen molecules using so-called higher harmonic laser sources. Experiments using these laser sources reach the limits available with such technology owing to the amount of laser power that is required. Now, the team has demonstrated a Coulomb explosion of nitrogen molecules using the XUV free electron laser (XUV-FEL) at the SPring-8 site1.

The researchers focused laser light of extremely short wavelengths of only 50 nm on nitrogen gas. They found that each nitrogen atom absorbs two light particles from the beam, providing sufficient energy to eject an electron, so that N2 is transformed into the highly unstable N22+ molecule. Because of the strong repulsive forces, the two nitrogen ions separated. The detection of individual N+ atoms provides conclusive evidence that a Coulomb explosion occurred.

Achieving a Coulomb explosion in this way is significant because, as Midorikawa comments, "the XUV-FEL laser has the potential to produce much higher beam intensities that will allow a much better study of the interaction of matter with strong electromagnetic fields." Indeed, experiments on larger molecules will commence once the XUV-FEL facility reaches full capacity.
Reference

1. Sato, T., Okino, T., Yamanouchi, K., Yagishita, A., Kannari, F., Yamakawa, K., Midorikawa, K., Nakano, H., Yabashi, M., Nagasono, M. & Ishikawa, T. Dissociative two-photon ionization of N2 in extreme ultraviolet by intense self-amplified spontaneous emission free electron laser light. Applied Physics Letters 92, 154103 (2008).

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project