Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Metamaterials shake up electrons

Figure 1: A backward wave oscillator (top), which generates microwave radiation by passing an electron beam through a ‘slow-wave structure’. Similar devices could incorporate man-made metamaterials, or ‘left-handed media’ (bottom) in place of the slow-wave structure to generate tuned visible or infrared radiation.
Figure 1: A backward wave oscillator (top), which generates microwave radiation by passing an electron beam through a ‘slow-wave structure’. Similar devices could incorporate man-made metamaterials, or ‘left-handed media’ (bottom) in place of the slow-wave structure to generate tuned visible or infrared radiation.

Abstract:
New man-made materials could produce unique chaotic motion in electron beams

Metamaterials shake up electrons

Japan | Posted on September 25th, 2008

A team at the RIKEN Advanced Science Institute in Wako has predicted that man-made structures called metamaterials could produce instabilities in electron beams1. The effect could provide new methods for generating and amplifying optical signals.

Metamaterials are often known as left-handed media (LHM) because they break the right-hand rule of electromagnetism. This means that the ‘envelope' of a wave—created by changes in wave height—in LHM can move in the opposite direction to the wave's overall motion. This is expected to produce phenomena similar to backward wave oscillators, which are common sources of microwave radiation (Fig. 1).

"Any system that contains two oppositely directed fluxes of information can be unstable if the coupling between the information carriers (waves and electrons in our case) is strong enough," explains RIKEN scientist Yuriy Bliokh, also at Technion-Israel Institute of Technology in Haifa.

The coupling between carriers in LHM is provided by Cherenkov radiation—a type of radiation emitted when a charged particle passes through an insulator at a speed faster than the speed of light in the insulator. It is responsible for the blue glow in nuclear reactors, and propagates from a particle beam just like the wake from a moving ship.

In LHM, Cherenkov radiation moves backwards, providing strong feedback for particles moving behind. In particular, two electron beams side-by-side could excite each other via their Cherenkov radiation, producing unstable, chaotic motion in the beams.

To investigate these effects, Bliokh and RIKEN co-workers Sergey Savel'ev, also at Loughborough University, UK, and Franco Nori, also at the University of Michigan, USA, developed a model which solves the equations of motion for two electron beams passing through LHM, and calculates the total electric field generated. "Small perturbations in the beam density were introduced to represent fluctuations that can occur in the real world," says Savel'ev.

The small perturbations developed into large instabilities, causing the beam to excite itself. "The behavior resembles beam instabilities that have been discovered in both plasma physics and microwave electronics," says Nori, and could have several applications if a suitable LHM can be realized in the laboratory.

"From my point of view, the most interesting applications would be in the short-wavelength (infrared, visible light) range, because there are already so many devices in the microwave frequency band," says Bliokh. "This effect could provide tunable sources of regular or stochastic radiation. Also, when the beam current is low, the instability is not developed and the system could be used as an amplifier."
Reference

1. Bliokh, Y.P., Savel'ev, S. & Nori, F. Electron-beam instability in left-handed media. Physical Review Letters 100, 244803 (2008).

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project