Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Reversible 3-D cell culture gel invented

Abstract:
Singapore's Institute of Bioengineering and Nanotechnology (IBN), which celebrates its fifth anniversary this year, has invented a unique user-friendly gel that can liquefy on demand, with the potential to revolutionize three-dimensional (3D) cell culture for medical research.

As reported in Nature Nanotechnology (Y.S. Pek, A. C. A. Wan, A. Shekaran, L. Zhuo and J. Y. Ying, "A Thixotropic Nanocomposite Gel for Three-Dimensional Cell Culture"), IBN's novel gel media has the unique ability to liquefy when it is subjected to a moderate shear force and rapidly resolidifies into a gel within one minute upon removal of the force. This phenomenon of reverting between a gel and a liquid state is known as thixotropy.

Reversible 3-D cell culture gel invented

Singapore | Posted on September 28th, 2008

IBN's thixotropic gel is synthesized from a nanocomposite of silica and polyethylene glycol (PEG) under room temperature, without special storage conditions. This novel material facilitates the safe and convenient culture of cells in 3D since cells can be easily added to the gel matrix without any chemical processes.

According to IBN Executive Director Jackie Y. Ying, Ph.D., "Cell culture is conventionally performed on a flat surface such as glass slides. It is an essential process in biological and medical research, and is widely used to process cells, synthesize biologics and develop treatments for a large variety of diseases.

"Cell culture within a 3D matrix would better mimic the actual conditions in the body as compared to the conventional 2D cell culture on flat surfaces. 3D cell culture also promises the development of better cell assays for drug screening," Dr. Ying added.

Another key feature of IBN's gel is the ease with which researchers can transfer the cultured cells from the matrix by pipetting the required amount from the liquefied gel.

Unlike conventional cell culture, trypsin is not required to detach the cultured cells from the solid media. As trypsin is an enzyme that is known to damage cells, especially in stem cell cultures, the long-term quality and viability of cells cultured using IBN's thixotropic gel would improve substantially without the exposure to this enzyme.

Researchers are also able to control the gel's stiffness, thus facilitating the differentiation of stem cells into specific cell types.

"Ways to control stem cell differentiation are important as stem cells can be differentiated into various cell types. Our gel can provide a novel method of studying stem cell differentiation, as well as an effective new means of introducing biological signals to cells to investigate their effect in 3D cultures," said Shona Pek, IBN Research Officer.

Andrew Wan, Ph.D., IBN Team Leader and Principal Research Scientist, added, "Another interesting property of the gel is its ability to support the extracellular matrix (ECM) secretions of cells. Gel stiffness is modulated by ECM secretions, and can be used to study ECM production by cells responding to drug treatments or disease conditions.

"The thixotropic gel may then provide new insights for basic research and drug development," Dr. Wan added.

####

About Agency for Science, Technology and Research (A*STAR), Singapore
Institute of Bioengineering and Nanotechnology (IBN):

IBN, a member of Singapore's Agency for Science, Technology and Research (A*STAR), was established in 2003.

Massachusetts Institute of Technology (MIT) Professor Jackie Yi Ru Ying, 42, was hand-picked by then A*STAR Chairman Philip Yeo to lead the institute as its Executive Director. She has been on MIT's Chemical Engineering faculty since 1992, and was promoted to professor in 2001. She is among the youngest to be promoted to this rank at MIT. Under her direction, IBN conducts research at the cutting-edge of bioengineering and nanotechnology.

Its programs are geared towards linking multiple disciplines across all fields in engineering, science and medicine to produce research breakthroughs that will improve healthcare and our quality of life.

IBN's research activities are focused in the following areas:

* Drug and Gene Delivery, where the controlled release of various therapeutics involve the use of functionalized polymers and hydrogels for targeting diseased cells and organs, or for responding to specific biological stimuli.
* Cell and Tissue Engineering, where biomimicking materials, stem cell technology and bioimaging are combined to develop novel approaches to regenerative medicine and artificial organs.
* Pharmaceuticals Synthesis and Nanobiotechnology, which encompass the efficient catalytic synthesis of chiral pharmaceuticals, and new materials for sustainable technology and alternative energy generation.
* Biosensors and Biodevices, which involve nanotechnology and microfabricated platforms for the detection and treatment of diseases, and the synthesis and screening of biologics.

IBN's innovative research is aimed at creating new knowledge and intellectual properties in the emerging fields of bioengineering and nanotechnology, to attract top-notch researchers and business partners to Singapore.

Since 2003, IBN researchers have produced a total of 436 papers published/in press, of which 177 were published in journals with impact factor greater than 3. IBN's work on hybrid magnetic-fluorescent nanoparticles, published in the Journal of the American Chemical Society in 2005, has received over 100 citations in three years.

IBN also plays an active role in technology transfer and spinning off companies, linking the research institute and industrial partners to other global institutions. As of July 2008, IBN has filed 578 patent applications on its inventions and the Institute is currently looking for partners for collaboration and commercialization of its portfolio of technologies.

IBN's current staff strength totals about 170 scientists, engineers and doctors. With its multinational and multidisciplinary research staff, the institute is geared towards generating new biomaterials, devices, systems, equipment and processes to boost Singapore's economy in the fast-growing biomedical sector.

IBN is also committed to nurturing young minds, and the institute acts as a training ground for PhD students and undergraduates. In October 2003, IBN initiated a Youth Research Program to open its doors to university students, as well as students and teachers from various secondary schools and junior colleges. It has since reached out to more than 23,000 students and teachers from over 190 local and overseas schools and institutions.

In 2008, IBN celebrates 5 years of innovative research. For more information, please log on to www.ibn.a-star.edu.sg.

For more information, please click here

Contacts:
Cathy Yarbrough

858-243-1814

Nidyah Sani
Tel: 65 6824 7005


Laura Lau
Tel: 65 6824 7040


Nature Nanotechnology media contact:

Rachel Twinn

Assistant Press Officer, Nature
Tel: +44 207 843 4658
Fax: +44 207 843 4951

Copyright © Agency for Science, Technology and Research (A*STAR)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project