Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Brain nerve cells can directly control stimulation of paralyzed muscles through an artificial connection

Clare McLean
Dr. Chet Moritz (left) and Dr. Eberhard Fetz (right) in their UW lab.
Clare McLean
Dr. Chet Moritz (left) and Dr. Eberhard Fetz (right) in their UW lab.

Abstract:
An artificial connection between nerve cells in the brain and muscles has been shown to restore voluntary movement to paralyzed limbs. This finding was reported today in the journal Nature.

Brain nerve cells can directly control stimulation of paralyzed muscles through an artificial connection

Seattle, WA | Posted on October 21st, 2008

Scientists would like to discover how to re-route brain signals to bypass damaged nerves to treat spinal cord injuries. A spinal cord injury impairs nerve pathways, but spares muscles and brain tissue.

Unlike previous experiments to activate paralyzed muscles through pre-determined electrical stimulation, or to tap brain activity to operate robotic arms or computer cursers, in this study muscles were directly stimulated using the activity of neurons in the motor cortex, the part of the brain that normally controls limb movement.

The study was proof of concept: it showed that the idea could work. What was exciting about this direct stimulation, said Dr. Eberhard Fetz, University of Washington professor of physiology & biophysics and a researcher at the Washington National Primate Research Center at the UW, is that it avoids the complex process of decoding neural signals to control a computer or robotic device. Direct stimulation of muscles may allow individuals to have more natural control of movement through their own volition. The experiments were performed with laboratory instrumentation, but the researchers also built a portable electronics device from off-the-shelf components to convert signals from the motor cortex neuron cells into stimuli. The device would fit in a matchbox and runs on AA batteries and would allow long-term practice with the artificial connection.

The research was conducted at the Washington National Primate Center and supported by the National Institutes of Health (NIH) Neurology Institute. Monkeys learned to use direct, artificial stimulation from arbitrarily chosen motor cortex cells, delivered to multiple muscles, to flex and extend their wrist to play a video game. Their wrist nerves had been temporarily numbed with a local anesthetic like lidocaine, which paralyzed the muscles. Despite the nerve block, the monkeys were able to control the contraction strength of their wrist muscles to match a set of targets on a computer screen. Controlling the degree of muscle contraction is what allows us to pick up an egg without breaking the shell or to grab tightly to a handrail to avoid a fall.

The monkeys got better at the video game with practice as they learned to control the neurons that triggered muscle stimulation. This method of learning to control a computer cursor is comparable to biofeedback training to moderate hand temperature or heart rate.

The scientists also found that neurons unrelated to wrist movement could provide signals to move wrist muscles. Moreover, muscles that flex and extend the wrist could be activated separately from different neurons.

"Nearly every motor cortex neuron we tested in the brain could be used to control the stimulation of the wrist muscles," said Dr. Chet Moritz, UW senior fellow in physiology and biophysics and lead author on the study, which also included UW researcher Steve Perlmutter. In particular, even brain cells initially unrelated to movement could be controlled and used to stimulate muscles.

"With biofeedback the brain can rapidly learn to control new cells to generate movement," Fetz noted. Because of this, perhaps someday researchers may help stroke patients by using stimulation from undamaged brain areas to restore function lost from damage in other areas of the brain.

The researchers think about a decade more of research is necessary before direct stimulation of muscles from brain cells can be applied in patients. The current study was limited by the temporary nature of the nerve block and the small range of neurons and muscles studied. Further development of a similar device might be useful in allowing severely paralyzed individuals to turn dials, press buttons, or hold a coffee cup.

To improve the practicality of this approach to treating paralysis with artificial nerve connections, scientists would need to increase the number of control signals from the brain to manage more muscle groups. At present researchers are hoping to scale up the device to a greater number of neurons. They might also try to find ways to control coordinated patterns of muscle activity by stimulating the spinal cord. Among other aspects that would need to be addressed before neural control of nerve or spinal stimulation becomes applicable and acceptable for patient testing are the size of the device, which needs more miniaturization, the wiring, and the power source.

"We could look into the possibilities of other power sources such as radiofrequency transmission," said Fetz. The miniaturization problem is also being addressed: scientists in UW Biology and Electrical Engineering Departments have already created chips small enough to place on a large insect.

Researchers would also have to determine the best placement for the recording electrodes. Using signals recorded from outside the skull would be less invasive but would provide less information, whereas neural signals recorded from electrodes inside the brain provide more information, but such recording is limited by eventual loss of signal due to cells growing on the electrodes.

Overall, the scientists observed, showing that brain nerve cells unrelated to movement can be recruited into movement control is another example of the striking plasticity of the brain.

"The brain can modify the activity of its cells beyond the conventional ways of characterizing their activity," they said. "We still don't know how flexible the brain is in reassigning cells to different functions."

####

For more information, please click here

Contacts:
Leila Gray

Copyright © University of Washington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Brain-Computer Interfaces

Developing nanoprobes to detect neurotransmitters in the brain: Researchers synthesize fluorescent molecularly imprinted polymer nanoparticles to sense small neurotransmitter molecules and understand how they govern brain activity March 3rd, 2023

Taking salt out of the water equation October 7th, 2022

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project