Home > Press > Yale journal finds nanomaterials may have large environmental footprint
Abstract:
Environmental gains derived from the use of nanomaterials may be offset in part by the process used to manufacture them, according to research published in a special issue of the Journal of Industrial Ecology.
Hatice Şengül and colleagues at the University of Illinois at Chicago assert that strict material purity requirements, lower tolerances for defects and lower yields of manufacturing processes may lead to greater environmental burdens than those associated with conventional manufacturing. In a separate study of carbon nanofiber production, Vikas Khanna and colleagues at Ohio State University found, for example, that the life-cycle environmental impacts may be as much as 100 times greater per unit of weight than those of traditional materials, potentially offsetting some of the environmental benefits of the small size of nanomaterials.
Materials engineered at dimensions of 1 to 100 nanometers¬ (1 to100 billionths of a meter) ¬exhibit novel physical, chemical and biological characteristics, opening possibilities for stunning innovations in medicine, manufacturing and a host of other sectors of the economy. Because small quantities of nanomaterials can accomplish the tasks of much larger amounts of conventional materials, the expectation has been that nanomaterials will lower energy and resource use and the pollution that accompanies them. The possibility of constructing miniature devices atom-by-atom has also given rise to expectations that precision in nanomanufacturing will lead to less waste and cleaner processes.
"Research in this issue reveals the potential of environmental impacts from nanomanufacturing to offset the benefits of using lighter nanomaterials," says Gus Speth, dean of the Yale School of Forestry & Environmental Studies. "To date, most attention has focused on the possible toxic effects of exposure to nanoparticles¬ and appropriately so. But considerations of pollution and energy use arising from the production technologies used to make nanomaterials need attention as well."
Other topics explored in the special issue include:
* Approaches for identifying and reducing the life cycle hazards of nanomaterials
* Quantified life cycle energy requirements and environmental impacts from nanomaterials
* Tradeoffs between nanomanufacturing costs and occupational exposure to nanoparticles
* Efficiency of techniques for nanomaterials synthesis
* Improvement of the sustainability of bio-based products through nanotechnology
* Industrial frameworks for responsible nanotechnology
* Industrial and public perception about the risks and benefits of nanomaterials
* Governance and regulation of nanotechnology
Industrial ecology is a field that examines the opportunities for sustainable production and consumption, emphasizing the importance of a systems view of environmental threats and remedies. "Through the use of tools such as life cycle assessment, green chemistry and pollution prevention, industrial ecology takes a broad and deliberate view of environmental challenges," states Reid Lifset, editor-in-chief of the Journal of Industrial Ecology. "This special issue shows the power of this approach."
Roland Clift, professor of environmental technology in the Centre for Environmental Strategy at the University of Surrey, and Shannon Lloyd, principal research engineer in the Sustainability & Process Engineering Directorate at Concurrent Technologies Corporation, served as guest editors. Support for this special issue was provided by the Educational Foundation of America in Westport, Conn., and the Project on Emerging Nanotechnologies of the Woodrow Wilson International Center for Scholars in Washington, D.C.
To obtain a PDF of the issue, contact The articles in this issue are also available online at www.interscience.wiley.com/journal/jie-nano. To request a print copy of the special issue, contact . The Journal of Industrial Ecology is the official journal of the International Society for Industrial Ecology. It is published for Yale University on behalf of the Yale School of Forestry & Environmental Studies. For more information, visit www.interscience.wiley.com/journal/jie.
####
For more information, please click here
Contacts:
David DeFusco
203-436-4842
Copyright © Yale University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Safety-Nanoparticles/Risk management
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||