Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Hopkins Engineer, Chemist Examine Impact of Carbon Nanotubes in Aquatic Environments

Oxidized carbon nanotubes with sorbates. Credit: Ball Lab / JHU
Oxidized carbon nanotubes with sorbates. Credit: Ball Lab / JHU

Abstract:
Carbon nanotubes (CNTs)—which resemble tiny rolls of chicken wire—are used in electronics, optics and other products because of their unusual strength and electrical conductivity. CNT's are also being used for drug delivery. But an engineer and a chemist affiliated with the Johns Hopkins Institute for NanoBioTechnology have teamed up to study the ways that nanotubes could transport harmful toxins in aquatic environments.

Hopkins Engineer, Chemist Examine Impact of Carbon Nanotubes in Aquatic Environments

Baltimore, MD | Posted on October 28th, 2008

William Ball, professor of environmental engineering in the Whiting School of Engineering, and Howard Fairbrother, professor of chemistry in the Krieger School of Arts and Sciences, received two separate grants from the National Science Foundation and the Environmental Protection Agency to study the effects of surface oxides on the behavior of carbon nanotubes and their influence on the mobility of contaminants in aquatic environments.

"When people or animals drink—or otherwise process—water that has been contaminated by CNTs, they may receive the toxins as well as the CNTs," says Ball. "Retention and toxicity of the CNT-bound chemicals is still unclear, but the retained chemicals and/or the CNTs themselves may cause harm and can also propagate further up the food chain."

The team will study how the surface chemistry of CNTs-namely the oxygen-containing functional groups (surface oxides) on the nanotubes—influence the material's ability to grab onto, transport, and release organic and inorganic pollutants and metals in lakes, streams and oceans, making the carbon nanotubes behave like a "Trojan Horse."

Part of the study will rely on models based on what is already known about the interaction of oxidized CNT surfaces and toxins. In a study published in Environmental Science and Technology in March 2008, Ball and Fairbrother investigated how surface oxides influenced the adsorption of Naphthalene on multi-walled carbon nanotubes (See reference below). Naphthalene is a common ingredient in mothballs, and exposure to high concentrations of the chemical can damage or destroy red blood cells.

In the experimental phase, the team will oxidize fresh CNTs with nitric acid to mimic the modifications used to purify and functionalize this carbon-based material. Next, the CNTs will be added to columns of silica or sand, and solutions containing organic compounds or metal ions will be flowed through. The liquid that flows out the other end of the column will be collected and analyzed. Testing will occur under different pHs and concentrations of dissolved organic matter, to represent aquatic environments.

These results, Ball says, will be further analyzed in light of appropriate theoretical models, as well as to experimental data about the sorption properties of the carbon nanotubes for various chemicals and the surface-surface interactions among and between CNTs and other materials.

To learn more about the participating Labs visit the profiles in the INBT Faculty Finder.

* Ball Lab
* Fairbrother Lab

Reference
Influence of Surface Oxides on the Adsorption of Naphthalene onto Multiwalled Carbon Nanotubes. Cho, Hyun-Hee, Smith, Billy A., Wnuk, Joshua D., Fairbrother, D. Howard, and Ball, William P. Environ. Sci. Technol., 42, 8, 2899 - 2905, 2008, 10.1021/es702363e

Story by Mary Spiro

####

About Institute for NanoBioTechnology (INBT)
The Institute for NanoBioTechnology at Johns Hopkins University is revolutionizing health care by bringing together internationally renowned expertise in medicine, engineering, the sciences, and public health to create new knowledge and groundbreaking technologies.

INBT programs in research, education, outreach, and technology transfer are designed to foster the next wave of nanobiotechnology innovation.

For more information, please click here

Contacts:
* Institute for NanoBioTechnology
214 Maryland Hall
3400 North Charles Street
Baltimore, MD 21218

* Email:
* Phone: (410) 516-3423
* Fax: (410) 516-2355

Mary Spiro

Copyright © Institute for NanoBioTechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Environment

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Safety-Nanoparticles/Risk management

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

New research may make future design of nanotechnology safer with fewer side effects: Study shows a promising strategy to reduce adverse reactions to nanoparticles by using complement inhibitors October 6th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project