Home > Press > The ESRF launches an ambitious Upgrade Program
Artist's impression of the ESRF with the extensions of the Upgrade Programme. Credits: ESRF/ Sud Architectes. |
Abstract:
X-ray imaging: Revealing both the 3-D structure and the chemical composition of an object without altering it has countless applications in materials science, cultural heritage and engineering. The objective in this field is to resolve structures smaller than one micrometre.
More than ten thousand scientists across Europe will profit from new investments in the European Synchrotron Radiation Facility (ESRF) approved today. Over the next seven years, unique new experimental facilities for research with X-rays will come into operation. This decision, taken by the ESRF Council, representing the 19 countries financing the ESRF, confirms Europe's vision to expand its global leadership in photon science.
On 24-25 November 2008, the 50th Council meeting of the ESRF approved a 10% budget increase for 2009, to start a 177 million Euros Upgrade Programme over the next seven years (2009-2015). The main element of this programme is the development of new world-class experimental stations (beamlines) which will gradually enter into service as of 2011.
The ESRF Upgrade Programme builds on the fact that no other research infrastructure is growing faster than light sources: since 1994 when the ESRF was inaugurated, more than twenty new synchrotrons opened in Europe, the US and Asia. They produce cutting-edge science, illustrated by the publication of at least one paper on average in every single issue of Science and Nature in 2007. As much as 20% of this global scientific output originated at the ESRF and much of it is relevant to everyday life. Whether it relates to promising targets for a new drug, candidate materials for hydrogen storage in cars, dust grains collected in outer space or liquid-crystal photovoltaic cells, there is a high probability that such research includes experiments at the ESRF to determine structures and properties at the atomic scale with unequalled resolution and accuracy.
I am convinced that the Upgrade Programme will ensure the competitiveness of the ESRF for the benefit of Europe and European science says Professor Robert Feidenhans'l, Deputy Director of the Niels-Bohr Institute in Copenhagen and Chairman of the ESRF Council. The five key targets of the Upgrade Programme are:
Nanoscience and technology: Molecular machines, quantum dots or self-assembling 2-D crystals sound like magic words today but nanotechnology will be in tomorrow's consumer products. The future nanoscience beamlines at the ESRF are a foundation stone for such nano-engineering.
Structural biology and soft matter: Progress in health and life sciences is linked to understanding processes at the atomic scale. There is an explosion today in demand to resolve the structure of molecules for the development of new drugs. A new generation of automated experiments will screen about a thousand samples in a single day.
Ultrafast molecular processes: Studying a chemical reaction as it happens, like in a film, is possible today, but not at sufficient speed. Pushing the time-resolution into the picosecond (one trillionth of a second) regime will open new insight in chemical processing, catalysis and how proteins function in living cells.
Science at extreme conditions: Developing advanced materials, chemical processing and planetary science all need to put samples under extreme pressure, temperatures and magnetic fields. Whatever the extreme, the ESRF will strive to make it available in situ on one of its beamlines.
X-ray imaging: Revealing both the 3-D structure and the chemical composition of an object without altering it has countless applications in materials science, cultural heritage and engineering. The objective in this field is to resolve structures smaller than one micrometre.
It was a challenging task to satisfy the needs of a huge and varied scientific community from many countries, and even more challenging to strike a balance between ambition and affordability. I am very gratefull to our member countries. Despite a difficult funding context, they have given the green light for our Upgrade Programme, which will ensure a very bright future for the ESRF, says Professor Bill Stirling, Director General of the ESRF.
####
About European Synchrotron Radiation Facility (ESRF)
The ESRF synchrotron is an ambitious project that represents a very real technological, scientific and human challenge. It could only be international.
In 1988, twelve European countries joined forces to create the synchrotron in Grenoble. Since then, seven more countries have joined the group. Together they create the indispensable synergy needed to carry out advanced scientific research.
For more information, please click here
Contacts:
Montserrat Capellas
tel +33 476 88 26 63
Copyright © European Synchrotron Radiation Facility (ESRF)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Openings/New facilities/Groundbreaking/Expansion
OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022
GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021
Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||