Home > Press > Novel progress in zeolite synthesis
Abstract:
A research team headed by Prof. TIAN Zhijian with the CAS Dalian Institute of Chemical Physics has made remarkable progress in the synthesis of zeolites, the aluminosilicate members of the family of microporous solids known as "molecular sieves." The result was published in a recent issue of Chemistry-A European Journal .
Zeolites are widely used as ion-exchange beds in domestic and commercial water purification, softening, and other applications. In chemistry, zeolites are used to separate molecules (only molecules of certain sizes and shapes can pass through), as traps for molecules so they can be analyzed. Zeolites have the potential of providing precise and specific separation of gases including the removal of H2O, CO2 and SO2 from low-grade natural gas streams. Other separations include noble gases, N2, O2, freon and formaldehyde. However, at present, the true potential to improve the handling of such gases in this manner remains unknown.
Recently, WANG Lei, XU Yunpeng and co-workers successfully introduced magnesium into the framework of the aluminophosphate zeolite via an ionothermal procedure, thus creating a new type of pure crystalline zeolite, MAPO-11.
Moreover, by supporting platinum onto this newly synthesized molecular sieve, the resulting catalyst showed excellent reactivities in the hydroisomerization of hydrocarbons, exhibiting a very promising commercial prospect.
This research project was supported by the National Natural Science Foundation of China.
####
About Chinese Academy of Sciences
CAS strives to build itself into a scientific research base at advanced international level, a base for fostering and bringing up advanced S&T talents, and a base for promoting the development of China's high and new technology industries. By 2010, CAS will have about 80 national institutes noted for their powerful capacities in S&T innovation and sustainable development or with distinctive features; thirty of them will become internationally acknowledged, high-level research institutions, and three to five will be world class.
For more information, please click here
Contacts:
Chinese Academy of Sciences
Add: 52 Sanlihe Rd., Beijing China
Postcode: 100864
Tel: 86 10 68597289
Fax: 86 10 68512458
Chief-Editor's Information:
Guo Haiyan
the Editor
Bulletin of Chinese Academy of Sciences
CAS Institute of Policy & Management,
P.O.Box 8712, Beijing 100080, China.
Copyright © Chinese Academy of Sciences
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||