Home > Press > Nanoscopic static electricity generates chiral patterns
Abstract:
In the tiny world of amino acids and proteins and in the helical shape of DNA, a biological phenomenon abounds.
These objects are all chiral — they cannot exactly superimpose their mirror image by translation or rotation. A common example of this is human hands — a right hand cannot superimpose itself into its mirror image, a left hand. This description of a molecule's symmetry (or lack thereof) is important in determining the molecule's properties in chemistry.
But while scientists and engineers know that at the sub-atomic level weak forces are chiral, how these electrostatic forces can generate a chiral world is still a mystery.
Researchers at Northwestern University in the group of Monica Olvera de la Cruz, professor of materials science and engineering and chemical and biological engineering at the McCormick School of Engineering and Applied Science, have recently shown how electrostatic interactions — commonly known as static electricity — alone can give rise to helical shapes. The group has constructed a mathematical model that can capture all possible regular shapes chiral objects could have, and they computed the preferred arrangements induced by electrostatic interactions.
Their work will be published as the cover story in the journal Soft Matter and is published online.
"In this way we are simply letting nature tell us how it would like to be, and we generalize it to many different systems," Olvera de la Cruz says." She and her colleagues report that chirality can only spontaneously arise as a consequence of electrostatic interactions and does not require the presence of other more complicated interactions, like dipolar or short-range van der Waals interactions.
Their model also describes arrangement of DNA mixed with carbon nanotubes. DNA has been shown to form helices around nanotubes, thereby separating the different types of carbon nanotubes into families.
The research findings concur with previous research using microscopy.
"From our predicted helical shapes of DNA wrapped around carbon nanotubes, we found amazing correspondence to those that were recently measured by atomic force microscopy," Olvera de le Cruz says.
The work shows that electrostatics is a pathway for understanding how nature generates helical symmetries. Researchers hope that future work can show how to use simple interactions to generate other symmetries that drive complex phenomena.
The research was done in the department of materials science and engineering. Graziano Vernizzi, research assistant professor, and Kevin Kohlstedt, graduate student, co-authored the paper.
The work was supported by the Department of Energy Computational Science Graduate Fellowship and the National Science Foundation.
####
For more information, please click here
Contacts:
Kyle Delaney
k-delaney@northwestern.edu
847-467-4010
Copyright © Northwestern University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Chemistry
Quantum interference in molecule-surface collisions February 28th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Biomimetics
First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020
Nanoribbons in solutions mimic nature: Rice University scientists test graphene ribbons' abilities to integrate with biological systems August 15th, 2016
IEEE ROBIO 2015 Call for Papers: 2015 IEEE International Conference on Robotics and Biomimetics - December 6-9, 2015, Zhuhai, China July 19th, 2015
Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers December 8th, 2014
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Discoveries
Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |