Home > Press > "Two-handed" Marine Microbes Point to New Method for Isolating Harmful Forms of Chemicals
This microfluidic device was used to discover new information about marine bacteria.
Credit: Roman Stocker, MIT |
Abstract:
Major impact envisioned for pharmaceutical, food, agriculture industries
Scientists studying how marine bacteria move have discovered that a sharp variation in water current segregates right-handed bacteria from their left-handed brethren, impelling the microbes in opposite directions.
This finding and the possibility of quickly and cheaply implementing the segregation of two-handed objects in the laboratory could have a big impact on industries like the pharmaceutical industry, for which the separation of right-handed from left-handed molecules can be crucial to drug safety.
"This is a remarkable example of how basic research, initially focused on understanding how bacteria interact with their environment, can lead to discoveries far beyond that envisioned," said David Garrison, director of the National Science Foundation (NSF)'s Biological Oceanography Program, which funded the research.
While single-celled bacteria do not have hands, their helical-shaped flagella spiral either clockwise or counter-clockwise, making opposite-turning flagella similar to human hands in that they create mirror images of one another.
This two-handed quality is called chirality, and in a molecule, it can make the difference between healing and harming the human body.
"This discovery could impact our understanding of how water currents affect ocean microbes, particularly with respect to their ability to forage for food, since chiral effects make them drift off-course," said Roman Stocker, a marine scientist at MIT and lead investigator on the research project. "But it is also important for several industries that rely on the ability to separate two-handed molecules."
Stocker and graduate student Marcos, along with co-authors Henry Fu and Thomas Powers of Brown University, published their findings in the April 17 issue of the journal Physical Review Letters.
One of the best-known instances of a chiral molecule causing widespread harm occurred in the 1950s, when the drug thalidomide was given to pregnant women to prevent morning sickness.
One naturally occurring form--or isomer--of thalidomide reduces nausea; the other causes birth defects. In another commonly used chiral drug, naproxen, one isomer is analgesic; the other causes liver damage.
In their paper, the researchers describe how they designed a microfluidic environment--a device about the size of an iPod nano that has channels containing water and bacteria--to create a "shear" flow of layers of water moving at different speeds.
In their tests, Stocker and Marcos used a non-motile mutant of the bacterium Leptospira biflexa, whose entire body has the shape of a right-handed helix.They injected the Leptospira into the center of the microfluidic device and demonstrated that the bacteria drift off-course in a direction dictated by their chirality.
The researchers also developed a mathematical model of the process, and are implementing this new approach to separate objects at molecular scales.
"The methods currently used to separate chiral molecules are far more expensive and far slower than the microfluidic option," said Marcos.
"While we still have a way to go to separate actual chiral molecules, we think our work is very promising for the agriculture, food and pharmaceutical industries."
####
About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $6.06 billion. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.
For more information, please click here
Contacts:
Cheryl Dybas
NSF
(703) 292-7734
Denise Brehm
MIT
(617) 253-8069
Copyright © National Science Foundation
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Microfluidics/Nanofluidics
Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023
Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022
Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Food/Agriculture/Supplements
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||