Home > News > 'Fountain pen' injects nanodiamonds
May 22nd, 2009
'Fountain pen' injects nanodiamonds
Abstract:
Researchers in the US have created a 'fountain pen' probe that can pattern nanodiamonds at high resolution and inject them into single cells. The probe could be used as a research and development tool for creating nanodiamond devices and exploring the effect of single cells carrying medical drugs.
Nanodiamonds have several unique properties that make them attractive in biomedicine: they have a high surface area for their volume, they are bio-compatible, and - although no-one is quite sure how - they are able to steadily release drugs that have been attached to them.
However, scientists have found it challenging to control the placement of nanodiamonds precisely, which is crucial for creating nanodiamond-based devices or for injecting nanodiamonds into cells. There has been some success by adopting techniques similar to ink-jet printing, but even the best resolution offered by these, which is in the order of 100µm, is not fine enough.
Source:
rsc.org
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||