Home > News > Life on Mars with Pete Worden
July 2nd, 2009
Life on Mars with Pete Worden
Abstract:
Pete Worden, Director of the NASA Ames Research Center and an Advisor to the Space and Physical Sciences Track of Singularity University, "We have already done a lot of work on autonomous robots, which is the first step. Many of the Mars robots we've sent there have JPL on the outside and NASA Ames on the inside, since a lot of the software has been developed right here."
"Next, we'll want to build self-replicating robots, and that's why nanotechnology, artificial intelligence, and other technologies being worked on at Singularity University are so interesting. When you start looking at self-replicating robots, a biologist would tell you "well, we already know how to do that. Those are called living cells. Microbes." in particular. So one of the obvious questions is: Can we begin to take existing microbes and engineer them to do things? And then, at some point, can you actually create synthetic life that can be engineered to extract the materials you need and construct environments?"
"We have a research group here at NASA Ames that is looking at "extremophiles," life forms able to operate under highly extreme conditions, such as close to the boiling point of water, or in highly acidic conditions. These conditions may or may not represent exactly what you'd find on Mars, but we've been able to extract these self-replicating proteins and are beginning to figure out how you can replicate them to manipulate metals to construct substrates, and maybe even grow an electronic component."
h+: Are you talking about creating "synthetic life" that will duplicate what's going on with biology?
PW: Yes. Eventually. But at first, we're just using what we've already found in nature. In fact, there was an article the other day about using viruses to create batteries, and that you can modify the genome of a virus to construct battery leads (+, -), to create a kind of "nanobattery" using the viruses.
So rather than using the current manufacturing process, where somebody melts metal and pours it into molds and machines those parts together into an electrical component, in the future, we'll use microbes and proteins to "grow" them. In a cell, a particular genetic coding manufactures a particular kind of protein that it links to build, say, a cell wall. Well, supposing we modify that so rather than building a cell wall, it builds a substrate for an electronic component. It might be a simple modification to say, "OK, build this in a flat area." Then you have another one that comes in and says "OK, every few microns we have an electronic lead."
Source:
hplusmagazine.com
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Synthetic Biology
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Aerospace/Space
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024
Bridging light and electrons January 12th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Artificial Intelligence
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024
Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||