Home > Press > DuPont, Lehigh Scientists Refine DNA Sorting of Carbon Nanotubes Technique, Creates First Approach to Sorting Nanotubes by Species
Graphic: Refined process for DNA sorting of carbon nanotubes by species – model of a DNA barrel on a (8,4) nanotube formed by rolling up a 2D DNA sheet composed of two hydrogen-bonded anti-parallel ATTTATTTATTT strands.. (Graphic is courtesy of Lehigh University.). |
Abstract:
Discovery Provides Significant Step in Advancing Nano-Electronics, Nano-Photovoltaics
Scientists at DuPont and Lehigh University have refined a technique, first published in 2003, to sort carbon nanotubes using specific sequences of DNA. This technique offers the first demonstration that nanotubes can be sorted by size, property and symmetry (chirality).
This new finding, reported in the current issue (Vol. 460 No. 7252) of the journal Nature, is titled "DNA Sequence Motifs for Structure-Specific Recognition and Separation of Carbon Nanotubes." The study was co-authored by DuPont researchers Ming Zheng and Xiamin Tu, with Lehigh University professor of chemical engineering Anand Jagota and student Suresh Manohar. The research was funded by a National Science Foundation grant to a collaborative team from Lehigh University, MIT and DuPont.
There has been great interest in the revolutionary electrical, mechanical and thermal properties of single walled carbon nanotubes (SWNTs) since their discovery in the early 1990s. However, single walled carbon nanotubes are produced as complex mixtures of different nanotube species with different properties, greatly limiting their applications. In 2003, a publication in Science by DuPont scientists, including Zheng, disclosed a method to separate carbon nanotubes using DNA. This was the first demonstration that the problem of sorting SWNTs could be solved. DuPont has continued to investigate these materials, most recently publishing a chemical approach to separating metallic and semi-conducting nanotubes in the Jan. 9 edition of Science. The current development is a significant advancement in this pioneering field, perfecting the only approach that uses biological molecules to carry out a refined sorting of carbon nanotubes, separating nanotubes with different optical, electronic and chemical properties.
"Our technique is similar to sorting snowflakes by wrapping DNA around each flake," Zheng said. "Nanotubes come in many sizes and designs, and each type offers unique properties for uses that can range from transistors for electronics, light sources for displays or conducting films for photovoltaic materials. The difficult part of our approach is identifying which DNA sequence is most efficient at separation. Our approach was a bit like probing into the DNA library to determine sequences. Through this approach we tried over 350 sequences and identified more than 20 that showed useful separation properties."
During the 18-month research program, Zheng and Tu set the course for the experimental work to identify the DNA sequences, and Jagota and Manohar developed the molecular models. The approach builds on the 2003 findings that a DNA sequence will wrap around a SWNT and then interact with micro-size beads in an anion exchange chromatography set-up in a way that depends on the type of nanotube to which the DNA is attached. This occurs because the carbon nanotube-DNA hybrids have different electrostatic properties that depend on the nanotubes' diameter and electronic behavior. The latest study has determined that the interaction is dependent on both the type of nanotube and the type of DNA. As a result, the research team focused on identifying the DNA sequences that performed the best with their corresponding SWNT species. The DNA library is vast, making the chance of finding these sequences through trial-and-error exceedingly low. The research team identified an approach called "sequence expansion" to systematically explore the DNA library in a confined and progressive manner. The result was the identification of more than 20 DNA sequences that reacted favorably with 12 species of nanotubes, sorting them with purity level of 80 to 90 percent.
"We are at a historic moment when biology and materials science meet at the nano meter scale, and this opens up lots of opportunities for new science and technology development," Zheng said. "We think this is the ultimate solution to isolate and identify every species of nanotube, allowing us to take advantage of the highest performance nanotube to create high performance nano-electronic and nano-photovoltaic materials and devices."
DuPont Science & Technology provides technologies and transformational options for new and existing businesses, building on a long, rich legacy of leading-edge science and innovation. Products commercialized over the last five years accounted for 35 percent of the company's total revenue.
DuPont is a science-based products and services company. Founded in 1802, DuPont puts science to work by creating sustainable solutions essential to a better, safer, healthier life for people everywhere. Operating in more than 70 countries, DuPont offers a wide range of innovative products and services for markets including agriculture and food; building and construction; communications; and transportation.
####
About DuPont
Founded in 1802, DuPont puts science to work by creating sustainable solutions essential to a better, safer, healthier life for people everywhere. Operating in more than 70 countries, DuPont offers a wide range of innovative products and services for markets including agriculture, nutrition, electronics, communications, safety and protection, home and construction, transportation and apparel.
For more information, please click here
Contacts:
Michelle Reardon
302-774-4005
Copyright © DuPont
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
“DNA Sequence Motifs for Structure-Specific Recognition and Separation of Carbon Nanotubes”
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||