Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > QuantaSol unveils 28.3% efficient single-junction solar cell World Record

Abstract:
QuantaSol unveils 28.3% efficient single-junction solar cell World record made public at UK's Royal Society Summer Science Exhibition

QuantaSol unveils 28.3% efficient single-junction solar cell World Record

Kingston-upon-Thames UK | Posted on July 21st, 2009

QuantaSol Ltd, a new independent designer and manufacturer of strain-balanced quantum-well solar cells, has developed what it believes to be the most efficient single junction solar cell ever manufactured. Developed in just two years, QuantaSol's single-junction device has been independently tested by Fraunhofer ISE as achieving 28.3% efficiency at greater than 500 suns.

QuantaSol was established in June 2007 as a spin-out of Imperial College London to commercialise the University's solar cell IP and offer devices to concentrator Photovoltaic (PV) systems developers. Imperial will be featuring a QuantaSol device as part of its presence at the Royal Society Summer Exhibition in London this week.

"Our technology is the industry's best kept secret. This is the first time that anyone has successfully combined high efficiency with ease of manufacture, historically a bug-bear of the solar cell industry," said Kevin Arthur, QuantaSol's CEO. "We're now gearing up to provide multi-junction cells of even higher efficiencies as early as Q1 2010."

QuantaSol's approach combines several nanostructures, of two or more different alloys, in order to obtain synthetic crystals that overcome the problems associated with current solar cell designs. It also greatly enhances the photovoltaic conversion efficiency.

The company, which has a development laboratory in Kingston-upon-Thames, Surrey, completed a £2m second funding round last week. It will now concentrate on cutting the cost of ownership of solar energy by moving to multi-junction devices.

####

About QuantaSol
QuantaSol is funded and backed by the Low Carbon Accelerator and Imperial Innovations, and its strain-balanced quantum-well solar cell (SB-QWSC) is believed to be the highest performing single- junction concentrator cell in the world with the potential to enhance multi-junction cells to record efficiencies very soon.

Solar cell manufacturers need to find a crystalline semiconductor material that exhibits the optimum light absorption range, is a good absorber of solar radiation (silicon, for instance, is weak), has essentially the same lattice spacing of commercially available substrates like Gallium Arsenide or Germanium, and can be deposited seamlessly on those substrates to form a unique artificial crystal with no defects or unwanted impurities, using commercially viable crystal-growth technologies. None of the known semiconductor compounds or alloys can meet all these conditions at the same time.

QuantaSol’s approach combines several nanostructures of two or more different alloys in order to obtain synthetic crystals that overcome the problems associated with current solar cell designs and also enhances the photovoltaic conversion efficiency.

For more information, please click here

Contacts:
Sales and technical - Kevin Arthur, QuantaSol
+44 20 8972 8830

Media - Andrew Shephard, EML
+44 20 8408 8000

Copyright © QuantaSol

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project