Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New Nanoparticles Could Revolutionize Therapeutic Drug Discovery

Abstract:
Understanding the structure of proteins is a vital first step in developing new drugs, but to date, researchers have had difficulty studying the large number of proteins that are normally embedded in the cell membrane, a family of proteins that includes those involved in cancer-related signaling processes. However, using nanoparticles, scientists from the University of Birmingham in the United Kingdom have found a way to preserve membrane proteins intact, enabling detailed analysis of their structure, molecular functions, and interaction with potential anticancer agents.

New Nanoparticles Could Revolutionize Therapeutic Drug Discovery

Bethesda, MD | Posted on July 21st, 2009

Michael Overduin, Ph.D., who led the study that was published in the Journal of the American Chemical Society, explained: "We have shown how a polymer can wrap around and preserve membrane proteins intact in stable nanoparticles. Membrane proteins are the most valuable but technically challenging targets for drug discovery. Finding a gentle solution that preserves their structure and activity, yet is robust enough for experimental interrogation, has eluded scientists for decades, but is now available."

The key to stabilizing membrane proteins turns out to be a polymer made of styrene and maleic acid. This copolymer is able to envelope membrane proteins in an environment that closely mimics that of the cell membrane while simultaneously forming stable nanoparticles that the researchers call styrene maleic acid lipid particles (SMALPs). The investigators found that not only did the proteins maintain their folded structure and binding and enzyme activities in the SMALPs, but also using the nanoparticles allowed them to be used in virtually any type of laboratory analysis.

Timothy R. Dafforn, Ph.D., who jointly ran the study, noted: "In the past, studies have concentrated largely on soluble proteins since membrane proteins are so difficult to make. However, the discovery of the SMALPs removes this barrier and opens up access to membrane proteins. This has exciting clinical implications since it may enable drug discovery on receptors that are currently too difficult to produce or to study by current methods."

This work is detailed in the paper "Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer." An investigator from the University of Warwick, United Kingdom, also participated in this study. An abstract of the paper is available at the journal's Web site.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project