Home > Press > IBM Scientists First to Image the “Anatomy” of a Molecule
Imaging the "anatomy" of a pentacene molecule - 3D rendered view: By using an atomically sharp metal tip terminated with a carbon monoxide molecule, IBM scientists were able to measure in the short-range regime of forces which allowed them to obtain an image of the inner structure of the molecule. The colored surface represents experimental data.
Image courtesy of IBM Research – Zurich |
Abstract:
IBM (NYSE: IBM) scientists have been able to image the "anatomy" -- or chemical structure -- inside a molecule with unprecedented resolution, using a complex technique known as noncontact atomic force microscopy.
The results push the exploration of using molecules and atoms at the smallest scale and could greatly impact the field of nanotechnology, which seeks to understand and control some of the smallest objects known to mankind.
"Though not an exact comparison, if you think about how a doctor uses an x-ray to image bones and organs inside the human body, we are using the atomic force microscope to image the atomic structures that are the backbones of individual molecules," said IBM Researcher Gerhard Meyer. "Scanning probe techniques offer amazing potential for prototyping complex functional structures and for tailoring and studying their electronic and chemical properties on the atomic scale."
The team's current publication follows on the heels of another experiment published just two months ago in the June 12 issue of Science (Volume 324, Issue 5933, pp. 1428 - 1431) where IBM scientists measured the charge states of atoms using an AFM. These breakthroughs will open new possibilities for investigating how charge transmits through molecules or molecular networks. Understanding the charge distribution at the atomic scale is essential for building smaller, faster and more energy-efficient computing components than today's processors and memory devices. These components could one day contribute to IBM's vision of a smarter planet by helping instrument and interconnect the physical world.
As reported in the August 28 issue of Science magazine, IBM Research - Zurich scientists Leo Gross, Fabian Mohn, Nikolaj Moll and Gerhard Meyer, in collaboration with Peter Liljeroth of Utrecht University, used an AFM operated in an ultrahigh vacuum and at very low temperatures ( -268oC or - 451oF) to image the chemical structure of individual pentacene molecules. With their AFM, the IBM scientists, for the first time ever, were able to look through the electron cloud and see the atomic backbone of an individual molecule. While not a direct technological comparison, this is reminiscent of x-rays that pass through soft tissue to enable clear images of bones.
The tip that tipped the scale
The AFM uses a sharp metal tip to measure the tiny forces between the tip and the sample, such as a molecule, to create an image. In the present experiments, the molecule investigated was pentacene. Pentacene is an oblong organic molecule consisting of 22 carbon atoms and 14 hydrogen atoms measuring 1.4 nanometers in length. The spacing between neighboring carbon atoms is only 0.14 nanometers—roughly 1 million times smaller then the diameter of a grain of sand. In the experimental image, the hexagonal shapes of the five carbon rings as well as the carbon atoms in the molecule are clearly resolved. Even the positions of the hydrogen atoms of the molecule can be deduced from the image.
"The key to achieving atomic resolution was an atomically sharp and defined tip apex as well as the very high stability of the system," said IBM scientist Leo Gross. To image the chemical structure of a molecule with an AFM, it is necessary to operate in very close proximity to the molecule. The range, where chemical interactions give significant contributions to the forces, is less than a nanometer. To achieve this, the IBM scientists were required to increase the sensitivity of the tip and overcome a major limitation: Similar to the way two magnets would attract or repel each other when getting close, the molecules would easily be displaced by or attach to the tip when the tip was approached too closely—rendering further measurements impossible.
Gross added, "We prepared our tip by deliberately picking up single atoms and molecules and showed that it is the foremost tip atom or molecule that governs the contrast and resolution of our AFM measurements." A tip terminated with a carbon monoxide (CO) molecule yielded the optimum contrast at a tip height of approximately 0.5 nanometers above the molecule being imaged and—acting like a powerful magnifying glass—resolved the individual atoms within the pentacene molecule, revealing its exact atomic-scale chemical structure.
Furthermore, the scientists were able to derive a complete three-dimensional force map of the molecule investigated. "To obtain a complete force map the microscope needed to be highly stable, both mechanically and thermally, to ensure that both the tip of the AFM and the molecule remained unaltered during the more than 20 hours of data acquisition," says Fabian Mohn, who is working on his Ph.D. thesis at IBM Research - Zurich.
To corroborate the experimental findings and gain further insight into the exact nature of the imaging mechanism, IBM scientist Nikolaj Moll performed first-principles density functional theory calculations of the system investigated. He explains, "The calculations helped us understand what caused the atomic contrast. In fact, we found that its source was Pauli repulsion between the CO and the pentacene molecule." This repulsive force stems from a quantum mechanical effect called the Pauli exclusion principle. It states that two identical electrons can not approach each other too closely.
IBM and nanotechnology
Scientists have been striving to "see" and manipulate atoms and molecules to extend human knowledge and push the frontiers of manufacturing capabilities to the nanometer regime. IBM has been a pioneer in nanoscience and nanotechnology ever since the development of the scanning tunneling microscope in 1981 by IBM Fellows Gerd Binnig and Heinrich Rohrer at IBM Research - Zurich. For this invention, which made it possible to image individual atoms and later on to manipulate them, Binnig and Rohrer were awarded the Nobel Prize in Physics in 1986. The AFM, an offspring of the STM, was invented by Binnig in 1986. The STM is widely regarded as the instrument that opened the door to the nanoworld. A new facility for world-class collaborative nanoscale research, the Nanoscale Exploratory Technology Laboratory, will open in 2011 on the campus of IBM Research - Zurich. The nanotech center is part of a strategic partnership in nanotechnology with ETH Zurich, one of Europe's premier technical universities.
The scientific paper entitled "The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy" by L. Gross, F. Mohn, N. Moll, P. Liljeroth, and G. Meyer, appears in Science, Volume 325, Issue 5944, pp. 1110 - 1114 (28 August 2009).
####
For more information, please click here
Contacts:
Jenny Hunter
IBM Media Relations - U.S.
510-919-5320
Nicole Herfurth
IBM Zurich
41-44 724 84 45
Chris Sciacca
IBM Zurich
41-44 724 84 43
Copyright © IBM
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
“The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy”
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||