Home > Press > Argonne scientists find new set of multiferroic materials: Breakthrough resulted from collaborative research with universities
Abstract:
The trail to a new multiferroic started with the theories of a U.S. Department of Energy's (DOE) Argonne National Laboratory scientist and ended with a multidisciplinary collaboration that created a material with potential impact on next generation electronics.
Argonne scientist Craig Fennie's principles of microscopic materials design predicted that the high pressure form of FeTiO3 would have both weak ferromagnetism and ferroelectric polarization, an unusual combination in a single material.
"We were able to take the theory and, through targeted synthesis and measurement, prove that FeTiO3 has both weak ferromagnetism and ferroelectricity, just as Craig predicted," Argonne scientist John Mitchell said. "Success in this materials design and discovery project would not have been possible without a collaborative team involving several disciplines and talents from across the lab and indeed the country."
Scientists from Argonne's materials science division and Center for Nanoscale Materials along with scientists from Pennsylvania State University, University of Chicago and Cornell University used piezoresponse force microscopy, optical second harmonic generation and magnetometry to show ferroelectricity at and below room temperature and weak ferromagnetism below 120 Kelvin for polycrystalline FeTiO3 synthesized at high pressure.
Multiferroic materials show both magnetism and polar order, which are seemingly contradictory properties. Magnetic ferroelectrics may have applications in memory, sensors, actuators and other multifunctional devices by acting as magnetic switches when their electric fields are reversed.
Multiferroic - add one
This project was recently published in Physical Review Letters and will be featured in the upcoming Advanced Photon Source annual report.
Funding for this research was provided by the U.S. Department of Energy, Office of Science.
####
About The Center for Nanoscale Materials at Argonne National Laboratory
The Center for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories.
The U.S. Department of Energy's Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.
For more information, please click here
Contacts:
Brock Cooper
Media Relations Specialist
Argonne National Laboratory
(630) 252-5565
Copyright © Argonne National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||