Home > News > Betting on a Metal-Air Battery Breakthrough
November 8th, 2009
Betting on a Metal-Air Battery Breakthrough
Abstract:
A spinoff from Arizona State University says it can develop a metal-air battery that dramatically outperforms the best lithium-ion batteries on the market, and now it has the funding it needs to prove it.
The U.S. Department of Energy last week awarded a $5.13-million research grant to Scottsdale, AZ-based Fluidic Energy toward development of a metal-air battery that relies on ionic liquids, instead of an aqueous solution, as its electrolyte.
Friesen is also cautious when talking about the other key component of Fluidic Energy's research: a metal electrode structure that overcomes the problem of dendrite formation. These branch-like structures can grow on, for example, a zinc electrode and cause a metal-air battery to short-circuit. Dendrite formation happens in rechargeable batteries when the chemical reactions are reversed, limiting the number of charging cycles. Fluidic Energy has developed an electrode scaffold with multi-modal porosity, meaning it has a range of pore sizes down to as small as 10 nanometers. The scaffold surrounds the metal, in this case zinc, and can prevent dendrites that form during charging.
Source:
technologyreview.com
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Automotive/Transportation
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||