Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > New light on Earth’s energy crisis

November 24th, 2009

New light on Earth’s energy crisis

Abstract:
Another exciting breakthrough is an electronic device that uses spinach to convert light into electrical charge, developed by US researchers. Zhang Shuguang and research collaborators at the Massachusetts Institute of Technology have combined a protein complex extracted from spinach chloroplasts, with organic semiconductors, to make a solar cell that could be incorporated with solid state electronics. "Nature has been doing this for billions of years," Zhang says, "but this is the first time we've been able to harness it."

With nanotechnology and the minimalist idea of ‘less is more', thinner and lighter panels are making way to a more efficient design of a solar panel.

Zhang's team artificially stabilised the protein complex at the heart of their system, consisting of 14 protein subunits and hundreds of chlorophyll molecules, using synthetic peptides to bind small amounts of water to it, within a sealed unit.

Photons then ‘excite' coupled pairs of electrons within chlorophyll, causing an electron to transfer to a nearby receptor molecule. Plants use this transfer to complete photosynthesis. Zhang has fostered this principle into his device, feeding electrons into organic semiconductors aligned on top of a layer of glass.

Zhang encountered difficulties with the use of organic materials in system. The protein complex is kept stable for about three weeks by the peptides, and the cells convert only twelve per cent of light to electrical charge. The solution seems to point towards layering numerous cells atop each other, so that a certain amount of light can pass through.

Interestingly enough, in New Zealand other researchers are on a similar wavelength. Solar cell technology developed by Massey University's Nanomaterials Research Centre will enable New Zealanders to create electricity from sunlight 90 per cent cheaper than the current silicon-based, photo-electric solar cells.

Source:
universityobserver.ie

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Environment

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project