Home > Press > Nanosensors Measure Cancer Biomarkers in Whole Blood
Abstract:
A multi-institutional team led by Yale University researchers has used nanosensors to measure cancer biomarkers in whole blood for the first time. Their findings, which appear in the journal Nature Nanotechnology, could dramatically simplify the way physicians test for biomarkers of cancer and other diseases. The team, led by Mark Reed, Ph.D., and Tarek Fahmy, Ph.D., used nanowire sensors to detect and measure concentrations of two specific biomarkers: one for prostate cancer and the other for breast cancer.
"Nanosensors have been around for the past decade, but they only worked in controlled, laboratory settings," Reed said. "This is the first time we've been able to use them with whole blood, which is a complicated solution containing proteins and ions and other things that affect detection."
To overcome the challenge of whole blood detection, the researchers developed a novel device that acts as a filter, catching the biomarkers—in this case, antigens specific to prostate and breast cancer—on a chip while washing away the rest of the blood. A silicon nanoribbon sensor then detects the concentrated antigens at extremely small concentrations, on the order of picograms per milliliter, to within an accuracy of plus or minus 10 percent. This is the equivalent of being able to detect the concentration of a single grain of salt dissolved in a large swimming pool. The entire process takes less than 20 minutes.
Until now, detection methods have only been able to determine whether or not a certain biomarker is present in the blood at sufficiently high concentrations for the detection equipment to give reliable estimates of its presence. "This new method is much more precise in reading out concentrations, and is much less dependent on the individual operator's interpretation," Fahmy said.
In addition to relying on somewhat subjective interpretations, current tests are also labor intensive. They involve taking a blood sample, sending it to a lab, using a centrifuge to separate the different components, isolating the plasma and putting it through an hours-long chemical analysis. The whole process takes several days. In comparison, the new device is able to read out biomarker concentrations in a just a few minutes. "Doctors could have these small, portable devices in their offices and get nearly instant readings," Fahmy said. "They could also carry them into the field and test patients on site."
The new device could also be used to test for a wide range of biomarkers at the same time, from ovarian cancer to cardiovascular disease, Reed said. "The advantage of this technology is that it takes the same effort to make a million devices as it does to make just one. We've brought the power of modern microelectronics to cancer detection."
This work is detailed in a paper titled, "Label-free biomarker detection from whole blood." Investigators from Cornell University and Harvard University also participated in this study. An abstract of this paper is available at the journal's Web site.
View abstract here www.nature.com/nnano/journal/vaop/ncurrent/abs/nnano.2009.353.html
####
About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Copyright © NCI Alliance for Nanotechnology in Cancer
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||