Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Cancer "Smart Bomb" Close to Launch

January 27th, 2010

Cancer "Smart Bomb" Close to Launch

Abstract:
Don't talk to Erkki Ruoslahti about happy accidents or serendipity. As the Finnish-born cell biologist (whose name is pronounced "air∙key roo∙slot∙ee") can attest from personal experience, "good luck" strikes only after years of sustained, methodical, and painstaking work. In Ruoslahti's case, that translates to more than 25 years studying the fundamental cellular biology by which cancer cells commandeer the body's otherwise healthy resources to feed malignant tumors with a fresh blood supply. Last month, Ruoslahti — now working at UCSB — co-published a research paper in the prestigious scientific journal Cancer Cell (along with colleagues from MIT and UC San Diego) that could prove nothing less than groundbreaking in how cancer tumors are first detected and then attacked. Thanks to the new breakthrough — which fused Ruoslahti's insights into the fundamental biology of cancer cells with nanotechnology delivery systems perfected by other scientists — the research team figured out how to get bigger payloads of cancer-fighting medicines deeper into the cancer tumors of mice than ever before.

For prospective cancer patients who might soon be facing the well-documented agonies of chemotherapy — in which all-out chemical warfare is waged on the body's cells in order to destroy the relatively few malignant ones — the implications of this research are staggering. "The more drug we have in the tumor, the bigger the effect is on the tumor," Ruoslahti explained. "But it's only the tumor that gets more drug; the normal tissues don't. That should reduce the side effects."

Source:
independent.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Erkki Ruoslahti

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project