Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Research at Marshall University may lead to new ways to transport and manipulate molecules

Dr. Eric Blough of Marshall University and his colleagues have shown how bionanomotors can be used some day to move and manipulate molecules at the nanoscale. Credit: Rick Haye, Marshall University
Dr. Eric Blough of Marshall University and his colleagues have shown how bionanomotors can be used some day to move and manipulate molecules at the nanoscale. Credit: Rick Haye, Marshall University

Abstract:
A group of Marshall University researchers and their colleagues in Japan are conducting research that may lead to new ways to move or position single moleculesa necessary step if man someday hopes to build molecular machines or other devices capable of working at very small scales.

Research at Marshall University may lead to new ways to transport and manipulate molecules

Huntington, WVA | Posted on February 2nd, 2010

Dr. Eric Blough, a member of the research team and an associate professor in Marshall University's Department of Biological Sciences, said his group has shown how bionanomotors can be used some day to move and manipulate molecules at the nanoscale.

Their research will be published in the Feb. 5 issue of the research journal Small.

"Being able to manipulate a single molecule under controlled conditions is actually a pretty big challenge," said Blough. "It's not quite the same, but imagine trying to pick up a single sewing needle off the ground with a huge steam shovel, and doing it so that you pick up the needle and nothing else. Or, to put it another wayhow do you manipulate something that is very tiny with something that is very big? We decided to try and get around this problem by seeing if it was possible to use single molecules to move other single molecules."

"What we are trying to replicate in the lab is something that nature has been doing for millions of years-cells use bionanomotors all the time to move things around," he said.

Blough describes bionanomotors as naturally occurring tiny "machines" that convert chemical energy directly into mechanical work. A nanometer is about 1/100,000 the width of a human hair. A nanomotor is similarly sized and operates at the smallest of small scales.

"Our muscles are living proof of how bionanomotors can be harnessed to do useful work," he added.

In the lab, Blough and his colleagues used myosina protein found in muscle that is responsible for generating the force of muscle contractionas the motor, and actinanother protein isolated from muscleas the carrier.

Using a technique to make a pattern of active myosin molecules on a surface, they showed how cargothey used small beadscould be attached to actin filaments and moved from one part of the surface to another. To improve the system, they also used actin filaments they had bundled together.

"When we first started our work, we noticed that single actin filaments moved randomly," said Dr. Hideyo Takatsuki, lead author of the journal article and a postdoctoral fellow in Blough's laboratory. "To be able to transport something from point A to point B effectively you need to be able to have some control over the movement. The actin filaments are so flexible that it is difficult to control their motion but we found that if we bundled a bunch of them together, the movement of the filaments was almost straight."

In addition, the team also showed they could use light to control the movement of the filaments.

"For a transport system to work efficiently, you really need to have the ability to stop the carrier to pick up cargo, as well as the means to stop transport when you arrive at your destination," added Takatsuki.

To control the movement, they chose to exploit the chemical properties of another molecule called blebbistatin.

"Blebbistatin is an inhibitor of myosin and can be switched on and off by light," Blough said. "We found that we could stop and start movement by changing how the system was illuminated."

According to Blough, the long-range goal of the team's work is to develop a platform for the development of a wide range of nanoscale transport and sensing applications in the biomedical field.

"The promise of nanotechnology is immense," he said. "Someday it might be possible to perform diagnostic tests using incredibly small amounts of sample that can be run in a very short period of time and with a high degree of accuracy. The implications for improving human health are incredible."

Blough added that although their recent work is a step forward, there is still a long way to go.

"A number of further advancements are necessary before bionanomotors can be used for 'lab-on-a-chip' applications," he said. "It's a challenging problem, but that is one of the great things about scienceevery day is new and interesting."

####

For more information, please click here

Contacts:
Eric Blough

304-696-2708

Copyright © EurekAlert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project