Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > MU researchers show potential for new cancer detection and therapy method

Raghuraman Kannan (left), and Kattesh Katti, faculty members in the department of radiology at the University of Missouri, have discovered gold nanoparticles that could be used to treat a variety of cancers. Credit: University of Missouri
Raghuraman Kannan (left), and Kattesh Katti, faculty members in the department of radiology at the University of Missouri, have discovered gold nanoparticles that could be used to treat a variety of cancers. Credit: University of Missouri

Abstract:
University of Missouri School of Medicine scientists explain a potentially new early cancer detection and treatment method using nanoparticles created at MU in an article published in the Proceedings of the National Academy of Sciences. The article illustrates how engineered gold nanoparticles tied to a cancer-specific receptor could be targeted to tumor cells to treat prostate, breast or lung cancers in humans.

MU researchers show potential for new cancer detection and therapy method

Columbia, MO | Posted on April 23rd, 2010

"When injected into the body, the Gastrin Releasing Peptide (GRP) cancer receptor serves as a signaling device to the gold nanoparticle, which allows for targeted delivery to the tumor site," said Kattesh Katti, PhD, who wrote the article with Raghuraman Kannan, PhD. "Consequently, the radiotherapeutic properties of such nanoparticles also provides valuable imaging and therapeutic tools that can be used for early cancer detection and therapy in various human cancers."

Because GRP receptor mediated imaging and the radiotherapy specifically targets cancer cells, patients could benefit from a more effective treatment with fewer side effects. GRP receptors are abundant in prostate, breast and small lung cancer cells, and the effectiveness of Katti and Kannan's gold nanoparticles has been proved in numerous studies.

"The development of GRP-receptor specific gold nanoparticles and proof of cancer receptor specificity in living subjects, as described by Drs. Katti and Kannan, is a significant and critical step toward the utility of engineered gold nanoparticles in molecular imaging and therapy of various cancers," said Institute of Medicine member Sanjiv Sam Gambhir, MD, PhD, Virginia and D. K. Ludwig Professor, as well as director of the Molecular Imaging Program and Canary Center for Cancer Early Detection at Stanford University.

Katti, Kannan, and others with the MU School of Medicine Department of Radiology have been researching the development of tumor specific gold nanoparticles for more than five years.

"This discovery presents a plethora of realistic opportunities for clinical translation, not only in the development of nanomedicine-based diagnostic technologies for early stage detection but also for therapies for treating tumors in prostate, breast and small cell lung cancer," Kannan said.

Kannan and Katti have developed a library of more than 85 engineered nanoparticles for use in molecular imaging and therapy. With scientists at the MU Research Reactor (MURR), the most powerful university reactor in the world, they have developed cancer specific therapeutic radioactive gold nanoparticles. MURR is one of only a few sites worldwide able to produce cancer targeting gold nanoparticles.

In 2005, Katti received a prostate cancer research grant that distinguished MU as one of only 12 universities to participate in the National Cancer Institute's national nanotechnology platform partnership. The grant supported MU faculty members in radiology, MURR, veterinary medicine, chemistry, physics and other programs to collaborate in establishing MU as a leader in advancing nanomedicine for the early detection and treatment of cancer.

In addition to serving as director of MU's Cancer Nanotechnology Platform, Katti is a Curators' Distinguished Professor in Radiology and Physics and Margaret Proctor Mulligan Distinguished Professor in Medical Research. Kannan is the Michael J. and Sharon R. Bukstein Distinguished Faculty Scholar in Cancer Research.

The article, titled "Bombesin Functionalized Gold Nanoparticles Show In vitro and In vivo Cancer Receptor Specificity,"

is available online at: www.pnas.org/content/early/2010/04/16/1002143107.abstract

The Proceedings of the National Academy of Sciences of the United States of America is one of the world's most-cited multidisciplinary scientific serials. Since its establishment in 1914, it continues to publish cutting-edge research reports, commentaries, reviews, perspectives, colloquium papers, and actions of the academy.

####

About University of Missouri-Columbia
The University of Missouri was founded in 1839 in Columbia, Mo., as the first public university west of the Mississippi River and the first state university in Thomas Jefferson's Louisiana Purchase territory. MU provides all the benefits of two universities in one — it's a major land-grant institution and Missouri's largest public research university.

Considered one of the nation's top-tier institutions, Mizzou has a reputation of excellence in teaching and research, and is the flagship campus of the four-campus University of Missouri System. It is one of only 34 public universities, and the only public institution in Missouri, to be selected for membership in the Association of American Universities. MU offers more than 286 degree programs — including 40 online degree options — and is designated as comprehensive doctoral with medical/veterinary by the Carnegie Foundation for the Advancement of Teaching.

For more information, please click here

Contacts:
Laura Gerding

573-882-9193

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project