Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > JSR Joins SEMATECH’s Resist Center at UAlbany NanoCollege

Abstract:
Collaboration to provide cost-effective semiconductor materials for 22nm nodes

JSR Joins SEMATECH’s Resist Center at UAlbany NanoCollege

Albany, NY and Tokyo, Japan | Posted on May 11th, 2010

SEMATECH, a global consortium of chipmakers, and JSR Corporation, an advanced materials supplier to chip-makers and others, and its U.S. operation, JSR Micro, Inc. announced today that it has become the newest member of SEMATECH's Resist Materials and Development Center (RMDC) at the College of Nanoscale Science and Engineering (CNSE) of the University at Albany.

JSR will collaborate with SEMATECH engineers on key resist issues in extreme ultraviolet (EUV) lithography. Focus areas will include:

· Working to reduce or eliminate line edge roughness (LER) in lithographic images below 22 nm

· Discovering ultimate resolution of newly formulated photoresists

· Testing various imaging materials for EUV sensitivity

SEMATECH and JSR have partnered previously in several technology development programs, including 300 mm test wafers, low-k films, and advanced resists, including double exposure materials.

"We have a successful history of partnership with SEMATECH and we are excited to continue that history in the field of EUV," said Hozumi Sato, managing director of JSR Corporation, responsible for the Research and Development. "Combining resources to create next generation of EUV materials is not only good for JSR and SEMATECH, but will benefit the industry as a whole."

"We're looking forward to working with JSR in our mutual effort to develop leading‑edge resists and materials, and accelerate process availability for EUV pilot line manufacturing," said John Warlaumont, vice president of Advanced Technology at SEMATECH. "Our successful experience in our previous partnerships will contribute greatly to RMDC's effectiveness."

"The addition of JSR to the roster of global companies at CNSE's Albany NanoTech Complex will further enhance the SEMATECH-CNSE partnership in driving leading-edge nanoelectronics innovations," said Richard Brilla, CNSE Vice President for Strategy, Alliances and Consortia. "This collaboration is enabling advances in a host of technologies, including EUV lithography, which are critical to industry."

At the RMDC, leading resist and materials suppliers participate in focused, cooperative R&D with SEMATECH member companies. Together, the RMDC provides the hardware and research expertise required by materials suppliers and member companies to develop EUV resist processes that meet the stringent resolution, linewidth roughness, and sensitivity specifications needed for EUV insertion at member companies.

####

About SEMATECH
For over 20 years, SEMATECH® (www.sematech.org), the international consortium of leading semiconductor manufacturers, has set global direction, enabled flexible collaboration, and bridged strategic R&D to manufacturing. Today, we continue accelerating the next technology revolution with our nanoelectronics and emerging technology partners.

About JSR Corporation
Tokyo based JSR Corporation is an advanced manufacturer in polymer chemistry, it operates a wide range of global businesses ranging from the petrochemical business, including the manufacture of synthetic rubber, to the cutting-edge information and electronic materials business, including the manufacture of semiconductor materials and liquid crystal display materials. For more information, visit www.jsr.co.jp.

About CNSE
The UAlbany CNSE is the first college in the world dedicated to education, research, development, and deployment in the emerging disciplines of nanoscience, nanoengineering, nanobioscience, and nanoeconomics. CNSE’s Albany NanoTech Complex is the most advanced research enterprise of its kind at any university in the world. With over $5.5 billion in high-tech investments, the 800,000-square-foot complex attracts corporate partners from around the world and offers students a one-of-a-kind academic experience. The UAlbany NanoCollege houses the only fully-integrated, 300mm wafer, computer chip pilot prototyping and demonstration line within 80,000 square feet of Class 1 capable cleanrooms. More than 2,500 scientists, researchers, engineers, students, and faculty work on site at CNSE’s Albany NanoTech, from companies including IBM, AMD, GlobalFoundries, SEMATECH, Toshiba, Applied Materials, Tokyo Electron, ASML, Novellus Systems, Vistec Lithography and Atotech. For more information, visit www.cnse.albany.edu.

For more information, please click here

Contacts:
SEMATECH
Erica McGill, 518-649-1041


JSR Corporation (Japan)
Yoshiko Takeda, 81-3-6218-3517


CNSE
Steve Janack, 518-956-7322


JSR Micro, Inc. (US)
Missy Bindseil, 408-543-8945

Copyright © SEMATECH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project