Home > Press > Speedy couriers in the cell
"Optical tweezers" |
Abstract:
Why motor proteins have brakes
Every single one of our cells contains so-called motor proteins that transport important substances from one location to another. However, very little is known about how exactly these transport processes occur. Biophysicists at the Technische Universitaet Muenchen (TUM) and Ludwig Maximilians Universitaet Muenchen (LMU) have now succeeded in explaining fundamental functions of a particularly interesting motor protein. They report their findings in the current issue of the Proceedings of the National Academy of Sciences (USA).
Motorized transport proteins are one of the keys to the development of higher organisms. It is they that enable the cell to transport important substances directly and quickly to a specific location in the cell. As bacteria cannot do this, they are not able to form larger cells or even large organisms with many cells. Particularly important are fast transport proteins in the primary cilia, the cell's antennas, with which they channel information from the surroundings into the cell.
Like trucks on a highway, kinesins transport cellular loads to their destinations. They do this by crawling along protein fibers, so-called microtubules, which extend through the entire cell. Kinesins consist of two long intertwined protein chains. At one end of every protein there is a head that can attach itself to certain structures on the surface of the microtubules; the freight is attached to the other end.
Very special kinesins are at work in the cilia of the Caenorhabditis elegans nematode: they consist of two different protein chains and are therefore especially suitable for investigating the transport mechanisms. As freight, the researchers attached small plastic beads to the ends of these motor proteins. They can manipulate these beads with "optical tweezers," a specially formed laser beam.
One end of the protein molecule was held with the optical tweezers; the other was able to walk on microtubules. This enabled the scientists to measure the force with which the motor protein can pull. In this experimental setup, the kinesin-2 with its freight walks as far as 1,500 nanometers in tiny steps measuring a mere eight nanometers. "If we didn't hold it back, it might still go a lot further," says Zeynep Ökten from the Institute for Cell Biology at LMU.
The kinesin-2 investigated consists of one KLP11 and one KLP20 protein. By exchanging the heads of the chains, the researchers were able to show that KLP11 is a non-processive motor protein. It only becomes a transport protein in combination with KLP20. In further experiments they were able to explain why nature chooses this unusual combination: KLP20 proteins have no "brakes." A transport protein made of two KLP20 units would be permanently on the go and would waste energy. The KLP11, in contrast, has a mechanism called autoinhibition, which makes sure that the transport protein is at a standstill if no freight is attached.
"Our results show that a molecular motor must take on a large number of functions over and above simple transport, if it wants to operate successfully in a cell," says Professor Matthias Rief from the Physics Department of the TU Muenchen. It must be possible to switch the motor on and off, and it must be able to accept a load needed at a specific location and hand it over at the destination. "It is impressive how nature manages to combine all of these functions in one molecule," Rief says. "In this respect it is still far superior to all the efforts of modern nanotechnology and serves as a great example to us all."
This work was supported by funds from the Cluster of Excellence Center for Integrated Protein Science Munich (CIPSM), a Long Term European Molecular Biology Organization fellowship and grants from the Deutsche Forschungsgemeinschaft (DFG) and the Friedrich-Baur-Stiftung.
Original Publication:
Regulation of a heterodimeric kinesin-2 through an unprocessive motor domain that is turned processive by its partner,
Melanie Brunnbauer, Felix Mueller-Planitz, Süleyman Kösem, Thi-Hieu Hoa, Renate Dombi, J. Christof M. Gebhardt, Matthias Rief, and Zeynep Ökten
PNAS Early Edition, May 17, 2010 - www.pnas.org/cgi/doi/10.1073/pnas.1005177107
####
For more information, please click here
Contacts:
Prof. Matthias Rief
Chair for Experimental Physics (E 22)
Technische Universitaet Muenchen
James-Franck-Str. 1, 85748
Garching, Germany
Tel: +49 89 289 12471
Fax: +49 89 289 12523
Copyright © Technische Universitaet Muenchen
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Molecular Machines
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotech scientists create world's smallest origami bird March 17th, 2021
Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||