Home > Press > Inspired by a cotton candy machine, engineers put a new spin on creating tiny nanofibers
Left: A diagram of the rotary jet spinner; upper right: The resulting "spun" nanofibers; bottom right: The nanofibers viewed at 10um. Credit: Kit Parker, Disease Biophysics Group at the Harvard School of Engineering and Applied Sciences |
Abstract:
Offering increased control and higher output, device could be a boon for industrial applications, from biocompatible materials to air filters
Hailed as a "cross between a high-speed centrifuge and a cotton candy machine," bioengineers at Harvard have developed a new, practical technology for fabricating tiny nanofibers.
The reference by lead author Mohammad Reza Badrossamay to the fairground treat of spun sugar is deliberate, as the device literally—and just as easily—spins, stretches, and pushes out 100 nanometer-diameter polymer-based threads using a rotating drum and nozzle.
The invention, reported in the May 24 online edition of Nano Letters, could be a boon for industry, with potential applications ranging from artificial organs and tissue regeneration to clothing and air filters. The researchers have filed a patent on their discovery.
"This is a vastly superior method to making nanofibers as compared to typical methods, with production output many times greater," says co-author Kit Parker, Thomas D. Cabot Associate Professor of Applied Science and Associate Professor of Bioengineering in the Harvard School of Engineering and Applied Sciences (SEAS); a core faculty member of the Wyss Institue for Biologically Inspired Engineering at Harvard; and member of the Harvard Stem Cell Institute. "Our technique will be highly desirable to industry, as the simple machines could easily bring nanofiber production into any laboratory. In effect, with this technique we can mainstream nanotextiles."
By contrast, the most common method of creating nanofibers is through electrospinning, or sending a high voltage electric change into a droplet of polymer liquid to draw out long wisps of nanoscale threads. While effective, electrospinning offers limited control and low output of the desired fibers.
The Harvard researchers turned to a simpler solution, using rotary jet spinning. Quickly feeding and then rotating the polymer material inside a reservoir atop a controllable motor offers more control and greater yield.
When spun, the material stretches much like molten sugar does as it begins to dry into thin, silky ribbons. Just as in cotton candy production, the nanofibers are extruded through a nozzle by a combination of hydrostatic and centrifugal pressure.
The resulting pile of extruded fibers form into a bagel like shape about 10 cm in diameter.
"The new system offers fabrication of naturally occurring and synthetic polymers as well as a lot of control over fiber alignment and web porosity, hierarchical and spatial organization of fibrous scaffold and three-dimensional assemblies," says Badrossamay, a postdoctoral fellow in the Wyss Institute and member of Parker's lab at SEAS.
The researchers tested the new device using a variety of synthetic and natural polymers such as polylactic acid in chloroform, a biodegradable polymer created from corn starch or sugarcane that has been used as eco-friendly alternative to plastic in items like disposable cups.
Moreover, the rapid spinning method provides a high degree of flexibility as the diameter of the fibers can be readily manipulated and the structures can be integrated into an aligned three-dimensional structure or any shape simply by varying how the fibers are collected.
The shape of the fibers can also be altered, ranging from beaded to textured to smooth.
Parker's Disease Biophysics Group (DBG), which has extensive expertise in cardiac tissue engineering, also used the technology to form tissue engineering scaffolds, or artificial structures upon which tissue can form and grow.
Heart tissue from rats was integrated and aligned with the nanofibers, and, as seen in past studies, formed beating muscle.
"I was visiting the Society of Laproscopic Surgeons a couple of years ago to look at the equipment demos and it dawned on me that we needed to develop techniques to miniaturize scaffold production so we could do it in vivo. Our finding is the first step," explains Parker. "The initial testing suggests that our technique is incredibly versatile for both research and everyday applications. As rotary jet spinning does not require high voltage, it really brings nanofiber fabrication to everyone."
The researchers expect to further refine the process for tissue engineering applications and to look for opportunities to exploit the advance in other textile applications.
###
Badrossamay and Parker's co-authors include Holly Alice McIlwee a bioengineering graduate student at SEAS, and Josue A. Goss, the DBG laboratory manager who built the machine with Badrossamay.
The researchers acknowledge the support of the Nanoscale Science and Engineering Center (NSEC) at Harvard; the Materials Research Science and Engineering Center (MRSEC) at Harvard; and Harvard Center for Nanoscale Systems (CNS), and the Wyss Institute for Biologically Inspired Engineering at Harvard. The work was also funded in part by a National Science Foundation's (NSF) graduate research fellowship program.
####
For more information, please click here
Contacts:
Michael Patrick Rutter
617-496-3815
Copyright © Harvard University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Textiles/Clothing
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022
Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||