Home > News > Tiny Needles to Fight Cancer
September 1st, 2010
Tiny Needles to Fight Cancer
Abstract:
Using a novel laser-based technique, researchers at North Carolina State University have made arrays of tiny, hollow plastic needles that they used to insert fluorescent quantum-dot dyes into skin. Biomedical engineering professor Roger Narayan, who leads the research, says the microneedles and quantum dots, which have been tested on pigs, could be used to diagnose and treat skin cancer, and other chronic diseases.
Researchers have recently developed ways touse quantum dots--nanocrystals of semiconductors such as cadmium selenide and zinc sulfide that glow in different colors--to image tumors and deliver drugs into cells. The dots are much brighter and more stable inside the body than traditional organic dyes. "When combined with microneedles, [quantum dots] can offer a powerful method to probe the skin and other tissues," says Mark Prausnitz, a chemical and biomolecular engineering professor at the Georgia Institute of Technology. Prausnitz has made biodegradable polymer microneedles that dissolve into the skin in a few minutes.
Source:
technologyreview.com
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||