Home > Press > UCLA Engineering receives $6M to construct new state-of-the-art building
Abstract:
The U.S. Commerce Department's National Institute of Standards and Technology (NIST) has awarded UCLA's Henry Samueli School of Engineering and Applied Science $6 million to support the construction of the new state-of-the-art Western Institute of Nanotechnology on Green Engineering and Metrology (WIN-GEM).
The new building will provide core research facilities that will serve UCLA Engineering's "centers of excellence" dedicated to advancing energy conservation technologies for microelectronics and nanotechnology.
WIN-GEM will include 35,000 square feet of laboratory space on four levels to support research on low-power, nonvolatile nanoelectronics; green manufacturing of novel nanomaterial-based energy technologies; and new materials for energy generation, storage and management. The roof of the building will include a solar-cell array for energy supply and power-management experimentation.
"We are grateful to NIST for the opportunity to be able to work on such a groundbreaking project as WIN-GEM," said Vijay K. Dhir, dean of UCLA Engineering. "The world-class facility will allow our faculty to continue their innovative research in areas that will advance essential energy conservation technologies."
The Western Institute of Nanoelectronics, one of the centers of excellence to be housed in WIN-GEM, is a consortium of major semiconductor companies in the U.S. and will partner with NIST to address the needs of electronics beyond today's mainstream CMOS (complementary metal-oxide semiconductor) technology.
Currently, the institute focuses on alternate spintronics technology, with an objective of achieving non-volatile electronics by the year 2020 in order to resolve the critical challenges of reducing power dissipation — for next-generation microelectronics, as well as green information technology.
The Western Institute of Electronics and the Center on Functional Engineered Nano Architectonics (FENA) — another center of excellence, which explores low-cost, high-yield, energy-efficient nanoscale manufacturing technologies for semiconductor devices — have more than 80 principal investigators in the U.S. in addition to those at UCLA. FENA will also be located in WIN-GEM.
"It gives us great excitement and pleasure to learn that NIST is funding our new WIN-GEM building," said WIN-GEM's principal investigator, Kang L. Wang, a professor of electrical engineering and director of both the Western Institute of Electronics and FENA. "We are thrilled to be a part of this construction plan, and the support will further strengthen our continued collaboration with NIST. WIN-GEM will allow UCLA to consolidate and upgrade several other centers' facilities and equipment that are now spread out across multiple sites at the university."
The new building will house the most advanced metrology and characterization equipment and will help accelerate research on nanoelectronics and spintronics, as well as green energy programs like those being addressed by WIN-GEM's third center, the Energy Frontier Research Center on Molecularly Engineered Energy Materials, which is funded by the U.S. Department of Energy.
"This award is extremely timely, given the current state budget constraints," said Jane P. Chang, associate dean of research and physical resources at UCLA Engineering and co-principal investigator of the project. "State-of-the-art infrastructure is greatly needed to support the innovative and critical work of our faculty. Furthermore, the green engineering and manufacturing aspects of the project are in line with both the direction of the city of Los Angeles and state of California and promise a greater impact when construction is completed."
The NIST award was funded under the NIST Construction Grant Program. This project was chosen on the basis of scientific and technical merit, the need for federal funding, design quality and sustainability for the intended purpose, and the strength of the project-management plan.
####
About UCLA Henry Samueli School of Engineering and Applied Science
The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to eight multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanotechnology, nanomanufacturing and nanoelectronics, all funded by federal and private agencies.
For more information, please click here
Contacts:
Wileen Wong Kromhout
310-206-0540
Matthew Chin
310-206-0680
Copyright © UCLA Henry Samueli School of Engineering and Applied Science
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Openings/New facilities/Groundbreaking/Expansion
OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022
GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021
Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||