Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > DNA can act like Velcro for nanoparticles

Argonne researcher Byeongdu Lee has determined that different shapes of gold nanoparticles, above and below, will self-assemble into different configurations when attached to single strands of DNA.
Argonne researcher Byeongdu Lee has determined that different shapes of gold nanoparticles, above and below, will self-assemble into different configurations when attached to single strands of DNA.

Abstract:
DNA can do more than direct how bodies our made — it can also direct the composition of many kinds of materials, according to a new study from the U.S. Department of Energy's Argonne National Laboratory.

By Jared Sagoff

DNA can act like Velcro for nanoparticles

Argonne, IL | Posted on December 8th, 2010

Argonne researcher Byeongdu Lee and his colleagues at Northwestern University discovered that strands of DNA can act as a kind of nanoscopic "Velcro" that binds different nanoparticles together. "It's generally difficult to precisely control the assembly of these types of nanostructures," Lee said. "By using DNA, we're borrowing nature's power."

The "Velcro" effect of the DNA is caused by the molecule's "sticky ends," which are regions of unpaired nucleotides — the building blocks of DNA — that are apt to bond chemically to their base-pair partners, just like in our genes. When sufficiently similar regions contact each other, chemical bonds form a rigid lattice. Scientists and engineers believe these complex nanostructures have the potential to form the basis of new plastics, electronics and fuels.

In 2008, Lee and his colleagues attached DNA to spherical nanoparticles made of gold, hoping to control the way the particles arrange themselves into compact, ordered crystals. This process is called nanoparticle "packing," and Lee believed that by affixing DNA to the nanoparticles, he could control how they packed together. "Materials that are packed differently — even if they are made from the same substance — have been shown to exhibit dramatically different physical and chemical properties," Lee said.

While the 2008 experiment showed that DNA appeared to control that instance of nanosphere packing, it was not known whether the effect would occur with different nanoparticle geometries. The more recent experiment looked at different shapes of nanoparticles to determine whether their contours affected how they packed.

According to Lee, the spherical nanoparticles in the earlier experiment tended to arrange themselves into one of two separate types of cubic crystals: a face-centered cube (a simple cube with nanospheres at each vertex and additional ones located in the middle of each face) or a body-centered cube (a simple cube with an additional nanosphere located in the middle of the cube itself). The type of lattice that the nanoparticles formed was determined by how the "sticky ends" attached to the nanoparticles paired together.

In the more recent experiment, the particles' shape did change the material's final structure, but only insofar as it altered how the DNA "sticky ends" attached to each other. In fact, the study showed that dodecahedral (12-sided) nanoparticles arranged into a face-centered cubic configuration while octahedral (8-sided) nanoparticles formed body-centered cubes — even when the nanoparticles were attached to identical strands of DNA. "We may be able to make all different types of nanoparticle packing structures, but the structure that will result will always be the one that maximizes the amount of binding," he said.

"The face-centered cubic structure is the most compact way for the nanoparticles to arrange themselves, while the body-centered cubic is slightly less compact. The DNA binding is really the true force controlling the construction of the lattice," he added.

A paper based on the research, "DNA-nanoparticle superlattices formed from anisotropic building blocks", appeared in the October 3 issue of Nature Materials.

Research at the Advanced Photon Source is supported by the U.S. Department of Energy's Office of Basic Energy Sciences.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Jared Sagoff
630/252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Quantum interference in molecule-surface collisions February 28th, 2025

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project