Home > Press > Nanoparticle gives antimicrobial ability to fight Listeria longer
Abstract:
A Purdue University research team developed a nanoparticle that can hold and release an antimicrobial agent as needed for extending the shelf life of foods susceptible to Listeria monocytogenes.
Yuan Yao, an assistant professor of food science, altered the surface of a carbohydrate found in sweet corn called phytoglycogen, which led to the creation of several forms of a nanoparticle that could attract and stabilize nisin, a food-based antimicrobial peptide. The nanoparticle can then preserve nisin for up to three weeks, combating Listeria, a potentially lethal foodborne pathogen found in meats, dairy and vegetables that is especially troublesome for pregnant women, infants, older people and others with weakened immune systems.
Controlling Listeria at deli counters, for example, is especially problematic because meat is continually being opened, cut and stored, giving Listeria many chances to contaminate the food. Nisin alone is only effective at inhibiting Listeria for a short period - possibly only a few days - in many foods.
"People have been using nisin for a number of years, but the problem has been that it is depleted quickly in a food system," said Arun Bhunia, a Purdue professor of food science who co-authored a paper with Yao on the findings in the early online version of the Journal of Controlled Release. "This nanoparticle is an improved way to deliver the antimicrobial properties of nisin for extended use."
Yao used two strategies to attract nisin to the phytoglycogen nanopoarticles. First, he was able to negatively charge the surface of the nanoparticle and use electrostatic activity to attract the positively charged nisin molecules. Second, he created a partially hydrophobic condition on the surface of the nanoparticle, causing it to interact with partially hydrophobic nisin molecules. When the particles are hydrophobic, or repel water, they become attracted to each other.
"Both strategies may work together to allow nanoparticles to attract and stabilize nisin," Yao said, "This could substantially reduce the depletion of nisin in various systems."
For practical use, Yao said a solution containing the nanoparticles and free nisin could be sprayed onto foods or included in packaging. The solution requires a balance of free nisin and nisin on the nanoparticles.
"When you reduce the amount of free nisin, it will trigger a release of more nisin from the nanoparticles to re-establish the equilibrium," Yao said. "There will be a substantial amount of nisin preserved to counteract the Listeria."
Using a model, Yao said a sufficient amount of nisin to combat Listeria could be preserved for up to 21 days.
Yao and his colleagues are working on using other food-based antimicrobial peptides and nano-constructs to combat Listeria other foodborne pathogens such as E. coli O157:H7 and salmonella. The U.S. Department of Agriculture and the National Science Foundation funded their research.
####
For more information, please click here
Contacts:
Writer:
Brian Wallheimer
765-496-2050
Sources:
Yuan Yao
765-494-6317
Arun Bhunia
765-494-5443
Ag Communications:
(765) 494-2722
Keith Robinson
Copyright © Purdue University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Food/Agriculture/Supplements
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||