MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Silicon-Nested Gadonanotubes Promise Big

a–c, Schematic showing Magnevist (a), GFs (b) and debundled GNTs (c). d,e, Scanning electron micrographs of quasi-hemispherical (H-SiMP: diameter, 1.6 µm; thickness, ~0.6 µm) (d) and discoidal (D-SiMP: diameter, 1.0 µm; thickness, 0.4 µm). Credit Nature
a–c, Schematic showing Magnevist (a), GFs (b) and debundled GNTs (c). d,e, Scanning electron micrographs of quasi-hemispherical (H-SiMP: diameter, 1.6 µm; thickness, ~0.6 µm) (d) and discoidal (D-SiMP: diameter, 1.0 µm; thickness, 0.4 µm). Credit Nature

Abstract:
A porous, disk-shaped "nest" for nanotubes may help magnetic resonance imaging become better than ever at finding evidence of cancer if the results of research led by investigators at Rice University are any indication of future success.

Silicon-Nested Gadonanotubes Promise Big

Bethesda, MD | Posted on December 17th, 2010

This research team, which also included colleagues from other Texas Medical Center institutions, as well as those in Colorado, Italy and Switzerland, have developed a general method for trapping paramagnetic nanoparticles inside a silicon particle that, when injected into a patient's bloodstream, would make the nanoparticles up to 50 times more effective at spotting tumors or other signs of disease. Paramagnetic contrast agents "light up" damaged tissue in the body in images produced by MRI instruments.

"Making MRIs better is no small matter," said Lon Wilson, one of three senior co-authors of the research paper published in the journal Nature Nanotechnology. The other senior co-authors include Mauro Ferrari, from the Methodist Hospital Research Institute, and Paolo Decuzzi, of the University of Texas Health Sciences Center at Houston. Drs. Ferrari and Decuzzi are members of the Texas Center for Cancer Nanomedicine, one of nice Centers of Cancer Nanotechnology Excellence funded by the National Cancer Institute's Alliance for Nanotechnology in Cancer.

In 2007, 28 million MRI scans were performed in the United States, and contrast agents were used in nearly 45 percent of them. "MRI is one of the most powerful medical tools for imaging, if not the most powerful," said Dr. Wilson. "It's not invasive, it's not ionizing harmful radiation, and the resolution is the best you can get in medical imaging." MRI's main limitation is its sensitivity. "So anything you can do to improve performance and increase sensitivity is a big deal -- and that's what this does."

A nano-sized slice of silicon shaped like a hockey puck served as a delivery device for contrast agents in the study. Pores that were mere nanometers long and wide were created in the discs, called silicon microparticles, or SiMPs. Three types of contrast agents were drawn into the pores. Magnevist, a common contrast agent used worldwide, was one; the others were gadofullerenes and gadonanotubes. All three of these contrast agents chemically sequester the toxic element gadolinium to make it safe for injection.

MRIs work by manipulating hydrogen atoms in water, which interact and align with the applied magnetic field from the instrument. The hydrogen atoms are then allowed to return to their original magnetic state, a process called relaxation. In the presence of the paramagnetic gadolinium ion, the atoms' relaxation time is shortened, making these regions brighter against the background under MRI.

SiMPs are small and when they trap both water molecules and bundles of nanotubes containing gadolinium, the protons appear much brighter in an MR image. Because SiMPs keep their form for up to 24 hours before dissolving into harmless silicic acid, the molecules can be imaged for a long time. The trick, though, is getting them to places in the body that doctors and technicians want to see. Wilson said SiMPs are designed to escape the bloodstream, where they leak and aggregate at the sites of tumors and lesions. "Spherical particles, at least in mathematical models, flow down the center of the vasculature," he said. "These particles are designed to hug the wall. When they encounter a leaky area like a cancer tumor, they can easily get out."

The encapsulation within SiMPs enhanced the performance of all three contrast agents, but SiMPs with gadonanotubes (carbon nanotubes that contain bundles of gadolinium ions) showed the best results. "The performance was enhanced beyond what we had imagined," he said. SiMPs may also be functionalized with peptides that target cancer and other cells. SiMPs that contain contrast agents and anticancer agents could potentially be tracked as they home in on tumors, where the drugs would be released as the silicon dissolves.

This work is detailed in paper titled, "Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast." An abstract of this paper is available at the journal's website.

View abstract at www.nature.com/nnano/journal/v5/n11/full/nnano.2010.203.html

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project