Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > LANL Announces Top 10 Science & Technology Developments of 2010

Abstract:
Los Alamos achievements in bioscience, photo imaging, metallurgy, astrophysics, and more

LANL Announces Top 10 Science & Technology Developments of 2010

Los Alamos, NM | Posted on December 20th, 2010

Los Alamos National Laboratory has named its Top 10 science and technology developments of 2010 based on major programmatic milestones, strategic potential, scholarly accounts, and associated news coverage.

"The science featured here represents just a fraction of what we the Laboratory accomplished this year. But it does indicate the extreme breadth of national security science work we do here at the Lab as well as the high caliber and dedication of people at Los Alamos in service to our nation," said Terry Wallace, LANL's principal associate director for science, technology, and engineering. "This year's compilation ranges from achievements in HIV vaccine research and airport security to stockpile stewardship and biofuels advancement."

Much of the science and technology at Los Alamos stems from or benefits the Lab's key national security mission performed for the National Nuclear Security Administration (NNSA).

"I continue to be impressed by the contributions this lab makes to improve the health and the quality of life of people around the world," said Kevin Smith, manager of

NNSA's Los Alamos Site Office. "We are very proud of the LANL men and women behind these accomplishments."

The Top 10 LANL science and technology developments of 2010:

Developing a novel HIV vaccine

Using the Lab's Roadrunner supercomputer, LANL scientists created the world's largest evolutionary tree for HIV, the virus that causes AIDS. Working as part of a consortium led by Duke University Medical Center, LANL researchers used this data to help design a new type of vaccine that's progressing to human clinical trials. The consortium's biometric mosaic vaccine approach benefits from computational methods developed at LANL to create sets of highly variable artificial viral proteins. In combination, these proteins provide nearly optimal coverage of HIV's diverse forms. Studies have shown that the mosaic vaccination strategy expands the breadth and depth of immune responses in rhesus monkeys, the best animal model available.

Advancing a liquid scanner system for use at airports

Los Alamos scientists successfully demonstrated in October a new version of the Lab's magnetic resonance scanner designed to characterize potentially explosive liquids and gels in bottles and cans. The device, called CoilViz, provides results in under 30 seconds, displaying a simple red-yellow-green light signal. The new prototype is smaller, faster, technologically simpler, and cheaper to produce than its predecessor, adapted from MRI medical technology. Last year's LANL Top 10 list included the earlier MagViz prototype, developed, like its successor, for the U.S. Department of Homeland Security.

Creating unprecedented imaging capabilities for stewardship of the nation's nuclear weapons stockpile and other applications

Lab staff this past year won five R&D 100 awards from R&D Magazine. One went to Scott Watson, inventor of the world's fastest and most flexible movie camera, MOXIE , which captures 20 million frames per second. MOXIE, which stands for Movies of eXtreme Imaging Experiments, can record images from visible light, X-rays, gamma rays, and neutron sources. Because each of MOXIE's pixels has its own detector, amplifier, analog-to-digital convertor, and memory—with thousands of channels operating in parallel—MOXIE achieves high frame rates, a large number of frames, and unprecedented sensitivity required to achieve imaging experiments that other cameras cannot. LANL already uses MOXIE for a wide variety of purposes, which include:

· taking X-ray movies of full-scale mock explosions at LANL's DARHT facility (which made LANL's 2009 Top 10 list), used to verify calculations and certify nuclear weapons without nuclear testing
· better enabling scientists to study material equations of state, fusion plasma, discharge formation, shock physics, and fracture mechanics
· improving the range of experiments using schlieren photography, X-
· ray fluoroscopy, neutron radiography, proton radiography, and visible light photography
· recording detailed movies of detonating improvised explosive devices and facilitating ballistic studies.

Taking advantage of MOXIE, LANL technical staff this year conducted experiments at DARHT (the Lab's Dual-Axis Radiographic Hydrodynamic Test Facility) that greatly benefited the national's Stockpile Stewardship Program. Inside a containment vessel at DARHT, high explosives drive an implosion of a warhead duplicate made from non-nuclear surrogate materials. Two electron accelerators positioned 90 degrees from one another generate high-powered X-rays that yield multiple images of the imploding device's inner workings, which are then compared with computer predictions.

Challenging conventional wisdom about solar wind—a new take on existing data

Research published this year by LANL's Joseph Borovsky indicated that the world scientific community may be fundamentally wrong about the behavior of solar wind—the plasma particles flowing from the sun and blasting past Earth. Borovsky determined that solar wind seems more likely configured as a network of tubes rather than a relatively simple stream of uniform structure. Understanding solar wind allows us to better understand geomagnetic storms, which can damage electrical power grids, satellites, and cell phone transmission.

Making radio waves travel faster than light

A Los Alamos researcher's perturbation of radio waves has made them travel faster than the speed of light—perhaps explaining the mysterious behavior of pulsars in the process. Using a polarizing synchrotron to combine radio waves with a rapidly spinning magnetic field, LANL's John Singleton developed a mechanism that could explain why radio emissions from pulsars are so bright and travel so far through space. (Pulsars are rapidly rotating neutron stars that emit radio waves in regular pulses.) At the same time, he may have discovered a new avenue for super-fast data transmission that could revolutionize medicine and the communications industry.

Boosting output for nuclear physics experiments by 240 percent with a new spallation target scheme

The new target-moderator-reflector system at LANSCE (Los Alamos Neutron Science Center) is producing 20 percent higher neutron (long-wavelength) flux than even the doubling predicted by numerical simulations. The increased flux at LANSCE's Lujan Center enables scientists from LANL and users from around the world to conduct physics experiments on longer scales of both wavelength and time. The third-generation system consists of tungsten targets and a series of moderators, reflectors, and flight paths that deliver neutrons of specified energies and fluxes to surrounding experiments and detector stations. Thanks to its recent redesign, the cold-neutron flux source rivals the highest power-pulsed spallation sources in the world while using just 10 percent of the Lujan Center's proton beam power.

Shedding new light on climate change

Findings by LANL scientists illuminated two major facets of climate change. One group analyzed a century's worth of temperature records from around the world to distinguish human-induced warming from natural variability. They discovered an alternating pattern in 20th-century warming trends of the Arctic and Antarctic Oceans. Their findings suggest that the Atlantic redistributes the heat between the poles. Scientists think that the natural Arctic warming is in phase with the anthropogenic global warming, thus amplifying warming effects.

Another group of LANL researchers examined the release of methane from beneath melting ice and its effect on oceanic oxygen levels. In fact, methane is a much more powerful greenhouse gas than carbon dioxide. Not only could the release of methane dramatically affect rates of warming, but methane could turn certain ocean regions into "dead zones."

Learning to design stronger materials better suited for use in generating nuclear energy

Los Alamos scientists advanced the base of knowledge required to develop the next generation of structural materials that have ultra-high flow strength, high deformability, and enhanced ability to withstand highly radioactive environments. Experts at the Lab designed, at the nanoscale, multilayered composites that exhibit these desirable properties. Simply put, they documented the mechanics of building quantities of metals, a few atoms at a time, layer by nanoscale layer, such that the resulting material is much stronger than the same substance created by conventional means. In a related development, other LANL scientists reported a surprising mechanism that allows nanocrystalline materials to heal themselves after suffering radiation-induced damage.

Gaining insight to more efficiently convert plant biomass into biofuels

LANL scientists and University of New Mexico collaborators discovered chinks in the armor of lignin, the component of plant cell walls that stubbornly protects cellulose from hydrolyzing enzymes and therefore regulates the early stages of fermentation-based ethanol production. It is hydrolysis—an enzyme-catalyzed bond-breaking process—that converts cellulose to glucose, a base material for fermentation. After synthesizing small fragments of lignin to study them in great detail, the researchers subjected the fragments to chemical, photochemical, and specialized oxidation processes and ran sophisticated quantum mechanical calculations. They found that particular types of chemical linkages were more readily broken than others. The next challenge is to genetically engineer plants that biosynthesize a variant form of lignin that contains more of the weaker linkages, thus making it more to cost- and energy-efficient for biomass batch processing.

Developing transparent light-harvesting materials

Scientists at Los Alamos and Brookhaven National Laboratories have fabricated transparent thin films capable of absorbing light and generating electric charge over a relatively large area. The semiconducting polymer material could be used to develop transparent solar panels or new types of optical displays. The method of depositing this film is potentially scalable to industrial size.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Jeff Berger
505-665-9178

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project