Home > Press > Bendy tubes get around
Abstract:
Rice-led researchers settle argument over mobility of flexible filaments
Theo Odijk, you win. The professor of biotechnology at Delft University of Technology in the Netherlands has a new best friend in Rice University's Matteo Pasquali.
Together with collaborators at the French National Center for Scientific Research (CNRS), the University of Bordeaux, France, and Vrije University, Amsterdam, the Rice professor and his team have settled a long-standing controversy in the field of polymer dynamics: The researchers proved once and for all that Odijk was correct in proclaiming that a little flexibility goes a long way for stiff filaments in a solution.
The study in the current issue of the journal Science shows that even a small ability to bend gives nanotubes and other tiny, stiff filaments the means to navigate through crowded environments, or even such fixed networks as cell matrices.
The work by Pasquali, a professor in chemical and biomolecular engineering and in chemistry, may bring about new ways to influence the motion of tiny filaments by tailoring their stiffness for a given environment.
Nanotubes are being studied for potential use in all kinds of sensing, even in the seemingly disparate fields of biological applications and oil exploration. In both, the ability of nanotubes and other fine, filamentous particles to move through their environments is critical, Pasquali said.
Understanding the motion of a single, flexible polymer chain in a network has been key to scientific advances by Odijk and others on, for example, the behavior of DNA. The Rice researchers expect their revelation to have no less impact.
Pasquali and lead author Nikta Fakhri, a former graduate student at Rice now doing postdoctoral research at the University of Gottingen, Germany, set out to break the deadlocked theories by Odijk and two other scientists who disagreed on the Brownian motion of stiff filaments in a crowded environment, and whether stiffness itself played any part.
"There's a long-standing, fundamental question: How does this threadlike object move when it gets crowded? It could be crowded because it's in a gel, or because there are a lot of threadlike objects with it -- which to that one object looks like a gel," he said.
Crowding constrains the ability of a filament to travel. Think of trying to get from the back to the front of a crowded bus; it takes a certain amount of agility to weave your way through the packed bodies. "It turns out that with a little flexibility, a filament can explore the space around it much more effectively," Pasquali said.
That becomes important when the goal is to get filaments to find and enter a cellular pore to deliver a dose of medication or to act as a fluorescent sensor.
"If you look at the human body, they say we're made of 60 percent water, but we don't slosh around," Pasquali explained. "That's because the water is trapped in pores. Almost all the water in our body is in gel-like structures: inside our cells, which are laden with filamentous networks, or in the interstitial fluid surrounding these cells. We are a big, squishy, porous medium. We need to understand how the nanoparticles move in this medium."
Pasquali and Fakhri mimicked biological networks by using varying concentrations of agarose gel, a porous material often used as a filter in biochemistry and molecular biology for DNA and proteins. The gel forms a matrix of controllable size through which molecules can move.
Nanotubes served as a stand-in for any type of filament, albeit one whose stiffness can be controlled. Like a PVC pipe in the macro world, nanotubes get stiffer as they get thicker; but even the stiffest tubes can flex a bit with length, and these tubes were thousands of times longer than they were wide.
The study started somewhat serendipitously when co-author Laurent Cognet, a researcher at CNRS and the University of Bordeaux, tried to immobilize nanotubes in agarose gels. He noticed in a failed experiment that the nanotubes moved in a "funny way" and discussed it with Pasquali.
Pasquali asked whether the nanotubes were reptating -- scientist lingo for a snakelike motion -- and Cognet said yes. Fakhri, who was studying the dynamics of nanotubes, traveled to the Bordeaux laboratory of Cognet and co-author Brahim Lounis to capture images of the nanotubes in motion.
The resulting spectroscopic and direct still and video images of 35 fluorescent single-walled nanotubes showed them snaking through the gel, probing pores and paths. The nanotubes, like all filaments, obeyed the rules of thermal-induced Brownian motion; they were pushed and pulled by the ever-changing states of the molecules around them.
The research established that flexibility significantly enhances the nanotubes' ability to navigate around obstacles and speeds up their exploration.
Pasquali said Fakhri doggedly pursued her analysis of the nanotubes' motion through computerized image recognition and motion tracking, as well as old-fashioned pencil-and-paper dynamical analysis. He said his longtime collaborator, co-author Frederick MacKintosh, a theoretical physicist at Vrije University, was a tremendous help. MacKintosh has been studying the dynamics of biological networks for nearly two decades.
Pasquali intends to replace the gel with real rocks to see how nanotubes, which can be used as oil-detecting sensors, move in a more structured environment. "Rocks can be a little more complicated," he said. "The question here is, what can nanotubes do better than nanoparticles? The answer may be that slender nanotubes may interact with electromagnetic fields more strongly than other nanoparticles of the same volume."
The National Science Foundation Center for Biological and Environmental Nanotechnology, the Welch Foundation, the Advanced Energy Consortium, the Région Aquitaine, the Agence National pour la Recherche, the European Research Council and the Dutch Foundation for Fundamental Research on Matter supported the work.
Read the abstract at www.sciencemag.org/content/330/6012/1804.abstract
A video of a reptating nanotube can be viewed at www.sciencemag.org/content/330/6012/1804/suppl/DC1
####
About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,279 undergraduates and 2,277 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.
For more information, please click here
Contacts:
David Ruth
713-348-6327
Mike Williams
713-348-6728
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||