Home > News > A Battery-Ultracapacitor Hybrid
January 10th, 2011
A Battery-Ultracapacitor Hybrid
Abstract:
By combining the chemistries of ultracapacitors and lithium-ion batteries, a company called Ioxus has created a hybrid energy-storage device that could recharge power tools in minutes and might never need to be replaced. The company says future incarnations could perhaps be used to capture energy from braking vehicles.
Ultracapacitors capture and release energy in seconds and can do so millions of times, but they store only about 5 percent as much energy as lithium-ion batteries. The hybrid can store more than twice the energy by volume of standard ultracapacitors. That's still much less than a lithium-ion battery, but the hybrid can be recharged quickly over 20,000 times as against a few hundred cycles for a typical battery.
A power tool using the lithium-ion ultracapacitor would run for only a 15th as long as it would on a battery but would recharge in just a minute. "Our product is for weekend warriors who don't use the power tool much every day" but want very fast charging, says Mark McGough, CEO of Ioxus. The company, which is based in Oneont, New York, already makes conventional ultracapacitors for hybrid-electric buses and for engine start-stop systems that are used to increase fuel economy in cars.
Source:
technologyreview.com
Related News Press |
News and information
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Possible Futures
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Automotive/Transportation
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||