Home > News > Nanolasers Heat Up
January 13th, 2011
Nanolasers Heat Up
Abstract:
Researchers have cleared a major hurdle to the practical use of nanoscale lasers, opening the way to fundamentally new capabilities in biosensing, computing, and optical communications. A team at the University of California, Berkeley, has demonstrated the first semiconductor plasmon nanolaser, or "spaser," that can operate at room temperature.
Working with Berkeley mechanical-engineering professor Xiang Zhang, postdocs Ren-Min Ma and Rupert Oulton designed and demonstrated the new semiconductor spaser. It uses metals and semiconductors, long recognized to be attractive materials because of their ubiquity and resilience. But previous spasers made of them lost too much energy to sustain lasing unless cooled to extremely low temperatures, below -250 °C.
Source:
technologyreview.com
Related News Press |
News and information
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Possible Futures
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Announcements
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||